Propiedades del Acero Aleado


El acero aleado es aquel constituido por acero con el agregado de varios elementos que sirven para mejorar sus propiedades físicas, mecánicas o químicas especiales.

Estas aleaciones logran diferentes resultados en función de la presencia o ausencia de otros metales: la adición de manganeso le confiere una mayor resistencia frente al impacto, el tungsteno, le permite soportar temperaturas más altas. Los aceros aleados además permiten una mayor amplitud en el proceso de tratamiento térmico.

Los efectos de la aleación son:

  • Mayor resistencia y dureza
  • Mayor resistencia al impacto
  • Mayor resistencia al desgaste
  • Mayor resistencia a la corrosión
  • Mayor resistencia a altas temperaturas
  • Penetración de temple (Aumento de la profundidad a la cual el acero puede ser endurecido)

Aleaciones

En aleación con:

  • Aluminio: Actúa como desoxidante para el acero Fundido y produce un Acero de Grano Fino.
  • Azufre: Normalmente es una impureza y se mantiene a un bajo nivel. Sin embargo, alguna veces se agrega intencionalmente en grandes cantidades (0,06 a 0,30%) para aumentar la maquinabilidad (habilidad para ser trabajado mediante cortes) de los aceros de aleación y al carbono.
  • Boro: Aumenta la templabilidad (la profundidad a la cual un acero puede ser endurecido).
  • Cromo: Aumenta la profundidad del endurecimiento y mejora la resistencia al desgaste y corrosión. Su adición origina la formación de diversos carburos de cromo que son muy duros; sin embargo, el acero resultante es más dúctil que un acero de la misma dureza producido simplemente al incrementar su contenido de carbono. La adición de cromo amplía el intervalo crítico de temperatura.
  • Manganeso: Elemento básico en todos los aceros comerciales; el manganeso se agrega a todos los aceros como agente de desoxidación y desulfuración, pero si el contenido de manganeso es superior a 1%, el acero se clasifica como un acero aleado al manganeso. Además de actuar como desoxidante, neutraliza los efectos nocivos del azufre, facilitando la laminación, moldeo y otras operaciones de trabajo en caliente. Aumenta también la penetración de temple y contribuye a su resistencia y dureza. Reduce el intervalo crítico de temperaturas.
  • Molibdeno: Mejora las propiedades del tratamiento térmico. Su aleación con acero forma carburos y también se disuelve en ferrita hasta cierto punto, de modo que intensifica su dureza y la tenacidad. El molibdeno abate sustancialmente el punto de transformación. Debido a este abatimiento, el molibdeno es ideal para optimizar las propiedades de templabilidad en aceite o en aire. Excepto el carbono, es el que tiene el mayor efecto endurecedor y un alto grado de tenacidad. Otorga gran dureza y resistencia a altas temperaturas.
  • Níquel: Mejora las propiedades del tratamiento térmico reduciendo la temperatura de endurecimiento y distorsión al ser templado. La aleación con níquel amplía el nivel crítico de temperatura, no forma carburos u óxidos. Esto aumenta la resistencia sin disminuir la ductilidad. El cromo se utiliza con frecuencia junto con el níquel para obtener la tenacidad y ductilidad proporcionadas por el níquel, y la resistencia al desgaste y la dureza que aporta el cromo.
  • Silicio: Se emplea como desoxidante y actúa como endurecedor en el acero de aleación. Cuando se adiciona a aceros de muy baja cantidad de carbono, produce un material frágil con baja pérdida por histéresis y alta permeabilidad magnética. El silicio se usa principalmente, junto con otros elementos de aleación como manganeso, cromo y vanadio, para estabilizar los carburos.
  • Titanio: Se emplea como un desoxidante y para inhibir el crecimiento granular. Aumenta también la resistencia a altas temperaturas.
  • Tungsteno: Se emplea en muchos aceros de aleación para herramientas. aún estando éstas candente o al rojo; les otorga una gran resistencia al desgaste y dureza a altas temperaturas.
  • Vanadio: El vanadio es un fuerte desoxidante y promueve un tamaño fino de grano, mejorando la tenacidad del acero. El acero al vanadio es muy difícil de suavizar por revenido, por ello se lo utiliza ampliamente en aceros para herramientas. Imparte dureza y ayuda en la formación de granos de tamaño fino. Aumenta la resistencia al impacto (resistencia a las fracturas por impacto) y a la fatiga.

Blog Construmatica

Artículos Relacionados