

Anclaje Tornillo

Versiones disponibles:

HUS-HR 6 Cabeza hexagonal, calidad A4. HUS-HR 8 Cabeza hexagonal, calidad A4. HUS-HR 10 Cabeza hexagonal, calidad A4. HUS-HR 14 Cabeza hexagonal, calidad A4.

Homologación Europea

Marcado CE

Software de diseño Hilti

Hormigón

Losa Alveolar

Zona traccionada

6 /

Resistencia a corrosión

Rsistencia al fuego

Distancia de borde y separación reducidas

Hilti HUS-HR | Hormigón

Sistema de anclaje de atornillado directo inoxidable.

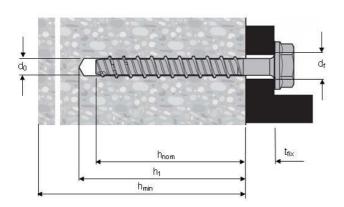
- La cabeza de corte del Hilti HUS-HR permite una colocación extraordinaria incluso en taladros imperfectos.
- Su forma de trabajo posibilita un buen comportamiento en hormigón fisurado.
- La calidad de acero A4, resistente a la corrosión.
- Recomendado para aplicaciones con responsabilidad estructural.
- Alta productividad. Requiere menor diámetro de taladro y número de operaciones que con los anclajes tradicionales.

Características y Ventajas

- Homologada según normativa europea Opción 1: hormigón fisurado y no fisurado de C20/25 a C50/60.
- Informe de resistencia al fuego en túneles ZTV Túnel (EBA).
- Aplicación rápida y sencilla.
- Baja expansión en el material base.
- Válido como anclaje pasante.
- Cabeza hexagonal y arandela incorporada que permiten un acabado perfecto.
- Desmontable.
- Permite pequeñas distancias a borde y de separación entre anclajes.
- Diseño de cálculo con el programa Hilti PROFIS Anchor 2.0

Aplicaciones

- Angulares, placas de anclajes en hormigón.
- Aplicaciones en exterior con o sin responsabilidad estructural.
- Fachada ventilada, muro cortina.
- Colocación de carriles.
- Estructuras metálicas.



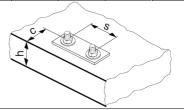
Detalles de colocación:

Longitud de taladro h₁ y longitud efectiva de anclaje h_{ef}

ETA Nº 08/0307 Validez hasta 12/12/2013

Detalles de colocación

Versión		HUS	S-HR		3		8			10		14	
Longitud de empotra	miento nominal	h _{nom}	[mm]	30	55	50	60	80	60	70	90	70	110
Diámetro de broca		d _o	[mm]		5		8			10		1	4
Diámetro de corte de	la broca	d _{cut} ≤	[mm]	6	,4		8,45			10,45		14	1,5
Profundidad de talad	ro	h₁≤	[mm]	40	65	60	70	90	70	70 80 100 80		120	
Diámetro del taladro	en placa	d _f ≤	[mm]	!	9		12		14 18		8		
Longitud efectiva de	anclaje	h _{ef}	[mm]	23	45	38	47	64	46 54 71 52		86		
Max. espesor a fijar		t _{fix}	[mm]					ls –	h _{nom}				
	Hormigón	T _{inst}	[Nm]	20	_ a)	35	_ a)	_ a)	45	45	45	65	65
May par de aprieta	Ladrillo macizo Mz 12	T _{inst}	[Nm]	_ b)	10	_ b)	16	16	-	20	20	_ b)	_ b)
Max. par de apriete	Ladrillo macizo KS 12	T _{inst}	[Nm]	_ b)	10	_ b)	16	16	-	20	20	_ b)	_ b)
	Hormigón aireado	T _{inst}	[Nm]	_ b)	4	_ b)	8	8	-	10	10	_ b)	_ b)


- a) Hilti recomienda colocación con máquina sólo para hormigón
- b) Hilti no recomienda este proceso de colocación para esta aplicación.

Espesor de material base, separación entre anclajes y distancia a borde

-		-	•			•	-					
Métrica	Métrica			HR 6	HUS-HR 8			Н	US-HR	10	HUS-HR 14	
Longitud de empotramiento nominal	h _{nom}	[mm]	30	55	50	60	80	60	70	80	70	110
Mínimo espesor de material base Hormigón no fisurado	h _{min}	[mm]	100	100	100	100	120	120	120	140	140	160
Separación minima	S _{min}	[mm]	40	40	45	45	50	50	50	50	50	60
Mínima distancia a borde	C _{min}	[mm]	40	40	45	45	50	50	50	50	50	60
Separación crítica para fallo por cono de hormigón y splitting (fisuración)	S _{cr,N} = S _{cr,sp}	[mm]	69	135	114	141	192	166	194	256	187	310
Separación crítica para fallo por cono de hormigón y splitting (fisuración)	C _{Cr,N} = C _{cr,sp}	[mm]	35	68	57	71	96	83	97	128	94	155

Para una separación (distancia a borde) menor que la separación crítica (distancia crítica a borde) la carga de diseño tienen que ser reducida (ver la resistencia de diseño del sistema).

La separación critica y la distancia a borde crítica por fallo por splitting sólo aplican para hormigón no fisurado. Para hormigón fisurado sólo son decisivas las distancias críticas para los fallos por borde de hormigón.

Datos de carga

Toda la información de esta sección es válida para

- Instalación correcta (ver instrucciones de colocación)
- Sin influencia entre anclajes ni de borde
- Tipo de hormigón recogido en tablas
- Fallo por acero
- Espesor mínimo de material base
- Hormigón C20/25, f_{ck,cube} = 25 N/mm²

Para más detalles ver el método de diseño simplificado.

Resistencia última media

		H	ormigón	no-fisura	do		Hormigór	n fisurado)
Métrica	HUS-HR	6	8	10	14	6	8	10	14
Profundidad mínima (Datos técnicos Hilti)									
h _{nom}	[mm]	30	50	60	-	30	50	60	-
Tracción N _{Ru,m}	[kN]	- ^{a)}	12,0	16,0	-	- ^{a)}	6,7	10,0	-
Cortante V _{Ru,m}	[kN]	- ^{a)}	31,5	41,9	-	_ a)	22,5	30,0	-
Profundidad reducida									
h _{nom}	[mm]	-	60	70	70	-	60	70	70
Tracción N _{Ru,m}	[kN]	-	16,0	21,3	25,2	-	8,0	12,0	16,0
Cortante V _{Ru,m}	[kN]	-	34,7	44,0	50,4	-	30,9	38,1	36,0
Profundidad estándar									
h _{nom}	[mm]	55	80	90	110	55	80	90	110
Tracción N _{Ru,m}	[kN]	12,0	21,3	33,3	53,6	6,7	16,0	21,3	33,3
Cortante V _{Ru,m}	[kN]	22,7	34,7	44,0	102,7	21,7	34,7	44,0	76,6

a) Consulte los datos técnicos de Hilti para fijación múltiple para cargas en cualquier dirección.

Resistencia característica

		H	ormigón	no-fisura	do		Hormigór	n fisurado)
Métrica	HUS-HR	6	8	10	14	6	8	10	14
Profundidad mínima (Datos técnicos Hilti)							,		
h _{nom}	[mm]	30	50	60	-	30	50	60	-
Tracción N _{Rk}	[kN]	- ^{a)}	9,0	12,0	-	- ^{a)}	5,0	7,5	-
Cortante V _{Rk}	[kN]	- ^{a)}	23,6	31,4	-	- ^{a)}	16,9	22,5	-
Profundidad reducida (ETA-08/0307)									
h _{nom}	[mm]	-	60	70	70	-	60	70	70
Tracción N _{Rk}	[kN]	-	12,0	16,0	18,9	-	6,0	9,0	12,0
Cortante V _{Rk}	[kN]	-	26,0	33,0	37,8	-	23,2	28,6	27,0
Profundidad estándar (ETA-08/0307)									
h _{nom}	[mm]	55	80	90	110	55	80	90	110
Tracción N _{Rk}	[kN]	9,0	16,0	25,0	40,2	5,0	12,0	16,0	25,0
Cortante V _{Rk}	[kN]	17,0	26,0	33,0	77,0	16,3	26,0	33,0	57,4

a) Consulte los datos técnicos de Hilti para fijación múltiple para cargas en cualquier dirección.

Resistencia de diseño

		Н	ormigón	no-fisura	do		Hormigór	n fisurado	•
Métrica	HUS-HR	6	8	10	14	6	8	10	14
Profundidad mínima (Datos técnicos Hilti)									
h _{nom}	[mm]	30	50	60	-	30	50	60	-
Tracción N _{Rd}	[kN]	- ^{a)}	5,0	6,7	-	- ^{a)}	2,8	4,2	-
Cortante V _{Rd}	[kN]	- ^{a)}	15,7	21,0	-	- ^{a)}	11,2	15,0	-
Profundidad reducida (ETA-08/0307)			J						
h _{nom}	[mm]	-	60	70	70	-	60	70	70
Tracción N _{Rd}	[kN]	-	6,7	8,9	10,5	-	3,3	5,0	6,7
Cortante V _{Rd}	[kN]	-	17,3	22,0	25,2	-	15,5	19,0	18,0
Profundidad estándar (ETA-08/0307)									
h _{nom}	[mm]	55	80	90	110	55	80	90	110
Tracción N _{Rd}	[kN]	4,3	8,9	13,9	22,3	2,4	6,7	8,9	13,9
Cortante V _{Rd}	[kN]	11,3	17,3	22,0	51,3	10,9	17,3	22,0	38,3

a) Consulte los datos técnicos de Hilti para fijación múltiple para cargas en cualquier dirección.

Cargas recomendadas

		Н	ormigón	no-fisura	do		Hormigór	n fisurado)
Métrica	HUS-HR	6	8	10	14	6	8	10	14
Profundidad mínima (Datos técnicos Hilti)			•			11			
h _{nom}	[mm]	30	50	60	-	30	50	60	-
Tracción N _{rec} a)	[kN]	_ b	3,6	4,8	-	_ b	2,0	3,0	-
Cortante V _{rec} a)	[kN]	_ b	11,2	15,0	-	_ b	8,0	10,7	-
Profundidad reducida (ETA-08/0307)			,						
h _{nom}	[mm]	-	60	70	70	-	60	70	70
Tracción N _{rec} a)	[kN]	-	4,8	6,3	7,5	-	2,4	3,6	4,8
Cortante V _{rec} a)	[kN]	-	12,4	15,7	18,0	-	11,0	13,6	12,9
Profundidad estándar (ETA-08/0307)			,						
h _{nom}	[mm]	55	80	90	110	55	80	90	110
Tracción N _{rec} a)	[kN]	3,1	6,3	9,9	16,0	1,7	4,8	6,3	9,9
Cortante V _{rec} a)	[kN]	8,1	12,4	15,7	36,7	7,8	12,4	15,7	27,3

a) Para las cargas recomendadas, se considera un coeficiente de seguridad parcial para las acciones de γ = 1,4. Los coeficientes de seguridad parciales para las acciones dependen del tipo de carga y deben tomarse de las normativas nacionales. De acuerdo con ETAG 001, anexo C, el coeficiente de seguridad parcial es γ_G = 1,35 para las acciones permanentes y γ_G = 1,5 para acciones variables.

b) Consulte los datos técnicos de Hilti para fijación múltiple para cargas en cualquier dirección.

Datos Técnicos Hilti para fijación multiple en cualquier dirección de carga, en hormigón fisurado y sin fisurar: f_{c,cube} ≥ 25 N/mm²

Métrica	h _{nom}	Valor característico	Valor de diseño	Valor recomendado
	[mm]	Carga F _{Rk} [kN]	Carga F _{Rd} [kN]	Carga F _{rec} [kN]
HUS-HR 6	30	2,0	1,0	0,7

Condiciones para fijación múltiple

La definición de fijación múltiple conforme a los Estados Miembros está recogida en la guía ETAG 001 parte 6, Anejo 1. En ausencia de una definición en el Estado Miembro se pueden tomar los siguientes valores por defecto.

Número Mínimo de puntos de fijación	Número mínimo de anclajes por punto de fijación	Máxima carga de diseño N _{Sd} por punto de fijación ^{a)}
3	1	2 kN
4	1	3 kN

a) El valor para la máxima carga por punto de fijación N_{Sd} asume que todos los anclajes son considerados en el estudio de la fijación múltiple. El valor N_{Sd} puede incrementarse si el fallo del anclaje más desfavorable es considerado en el diseño (en estado de servicio y en estado límite último) del sistema estructural del elemento suspendido.

Método de cálculo simplificado

Versión simplificada del método de diseño de de la ETAG 001, Anexo C. Resistencia de Diseño de acuerdo con la ETA-06/0159, edición 2006-06-26.

- Influencia de la resistencia del hormigón
- Influencia de la distancia a borde
- Influencia de la separación entre anclajes
- Válido para un grupo de dos anclajes.

El método puede ser también aplicado para grupos de más de dos anclajes o más de un borde . Los factores de influencia deben ser considerados para cada distancia a borde o separación entre anclajes. Las cargas de diseño calculados están del lado de la seguridad: serán más bajas que los valores presentes en la ETAG 001, Anexo C. Para evitar esto, se recomienda la utilización del software de diseño de anclajes PROFIS Anchor.

El método de diseño se basa en la siguiente simplificación:

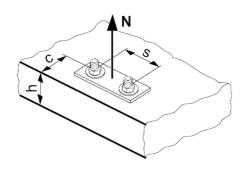
No hay cargas diferentes en valor actuando sobre los anclajes (no hay excentricidad)

Los valores son válidos para un solo anclaje. Las fijaciones múltiples no están cubiertas por este método de diseño.

Para disposiciones más complejas utilizar el Software de diseño PROFIS anchor.

Tracción

La resistencia a tracción es el menor valor de


- Resistencia del acero: N_{Rd.s}

- Resistencia a la extracción: $N_{Rd,p} \ge N_{Rd,p}^0 \cdot f_B$

- Resistencia por cono de hormigón: $N_{\text{Rd,c}} \ge N_{\text{Rd,c}}^0 \cdot f_{\text{B}} \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{\text{re,N}}$

Resistencia a splitting (sólo homigón no fisurado)

$$N_{Rd,sp} \ge N_{Rd,c}^0 \cdot f_B \cdot f_{1,sp} \cdot f_{2,sp} \cdot f_{3,sp} \cdot f_{re,N}$$

Resistencia de diseño a tracción

Resistencia de diseño del acero N_{Rd s}

Métrica		HUS-HR 6	HUS-HR 8	HUS-HR 10	HUS-HR 14
$N_{Rd,s}$	[kN]	17,0	24,3	37,6	73,0

Resistencia de diseño a extracción $N_{Rd,p} \ge N_{Rd,p}^0 \cdot f_B$

		H	ormigón	no-fisura	do	Hormigón fisura			ado	
Métrica		6	8	10	14	6	8	10	14	
Profundidad mínima (Datos técnicos Hilti)										
h _{nom}	[mm]	30	50	60	-	30	50	60	-	
Tracción N _{Rd}	[kN]	-	5,0	6,7	-	-	2,8	4,2	-	
Profundidad reducida			•						,	
h _{nom}	[mm]	-	60	70	70	-	60	70	70	
Tracción N _{Rd}	[kN]	-	6,7	8,9	10,5	-	3,3	5,0	6,7	
Profundidad estándar			•						,	
h _{nom}	[mm]	55	80	90	110	55	80	90	110	
Tracción N _{Rd}	[kN]	4,3	8,9	13,9	22,3	2,4	6,7	8,9	13,9	

Resistencia de diseño del cono de hormigón $N_{Rd,c} \ge N^0_{Rd,c} \cdot f_B \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{re,N}$ Resistencia de diseño a spliting (fisuración) * $N_{Rd,sp} \ge N^0_{Rd,c} \cdot f_B \cdot f_{1,sp} \cdot f_{2,sp} \cdot f_{3,sp} \cdot f_{re,N}$

		Н	ormigón	no-fisura	do		Hormigór	n fisurado)
Métrica		6	8	10	14	6	8	10	14
Profundidad mínima (Datos técnicos Hilti)									
h _{nom}	[mm]	30	50	60	-	30	50	60	-
N ⁰ _{Rd,c}	[kN]	-	6,6	8,7	-	-	4,7	6,2	-
Profundidad reducida									
h _{nom}	[mm]	-	60	70	70	-	60	70	70
N ⁰ _{Rd,c}	[kN]	-	9,0	11,1	10,5	-	6,4	7,9	7,5
Profundidad estándar			<u>, </u>						
h _{nom}	[mm]	55	80	90	110	55	80	90	110
N ⁰ _{Rd,c}	[kN]	7,2	14,3	16,8	22,3	5,2	10,2	12,0	16,0

a) La resistencia a splitting sólo debe considerarse en hormigón no fisurado.

DITE: Datos según homologación europea ETA-08/0307 publicada el 2008-12-12; Hilti: Datos adicionales internos de Hilti AG.

Factores de influencia

Influencia de la resistencia del hormigón

Clase (ENV 2	de resistencia del hormigón 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
f _B =	$(f_{ck,cube}/25N/mm^2)^{0,5}$ a)	1	1,1	1,22	1,34	1,41	1,48	1,55

a) f_{ck,cube} = Resistencia a compresión del hormigón, medida en probeta cúbica.

Influencia de la distancia a borde^{a)}

c/c _{cr,N}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
$\begin{aligned} f_{1,N} &= & 0.7 + 0.3 \cdot c/c_{cr,N} \le 1 \\ f_{1,sp} &= & 0.7 + 0.3 \cdot c/c_{cr,sp} \le 1 \end{aligned}$	0,73	0,76	0,79	0,82	0,85	0,88	0,91	0,94	0,97	1
$f_{2,N} = 0,5 \cdot (1 + c/c_{cr,N}) \le 1$ $f_{2,sp} = 0,5 \cdot (1 + c/c_{cr,sp}) \le 1$	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1

a) La distancia a borde no debe ser menor que la distancia a borde mínima c_{min} recogida en la tabla con las condiciones de colocación. Estos factores de influencia deben ser considerados para todos los valores de distancia a borde.

Influencia de la separación entre anclajes a)

s/s _{cr,N}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
s/s _{cr,sp}	,	,	,		,	,	,			'
$f_{3,N} = 0,5 \cdot (1 + s/s_{cr,N}) \le 1$	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1
$f_{3,sp} = 0,5 \cdot (1 + s/s_{cr,sp}) \le 1$	0,55	0,00	0,03	0,70	0,73	0,80	0,65	0,90	0,95	'

La separación entre anclajes no debe ser menor que la separación mínima s_{min} recogida en la tabla con los datos de colocación. Estos factores de influencia deben ser considerados para cada separación entre anclajes.

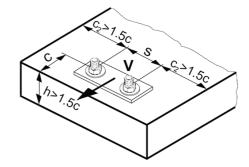
Influencia del espesor del material base

h/h _{ef}	2,0	2,2	2,4	2,6	2,8	3,0	3,2	3,4	3,6	≥ 3,68
$f_{h,sp} = [h/(2 \cdot h_{ef})]^{2/3}$	1	1,07	1,13	1,19	1,25	1,31	1,37	1,42	1,48	1,5

Influencia del armado

Métrica		HUS-HR 6		HUS-HR 8			н	US-HR	HUS-HR 14		
h _{nom} [mm]		30	55	50	60	80	60	70	80	70	110
h _{ef}	[mm]	23	45	38	47	64	46	54	71	52	86
$f_{re,N} = 0.5 + h_{ef}/200 \text{mm} \le 1$		0,62	0,73	0,69	0,74	0,82	0,73	0,77	0,86	0,76	0,93

a) Este factor se aplica sólo para armado denso. Si, en el area del anclaje, existe armado con una separación ≤ 150 mm (cualquier diámetro) o con un diámetro ≤ 10 mm y una separación ≤ 100 mm, entonces se puede aplicar un factor f_{re,N} = 1.


Cortante

La resistencia a Cortante es la menor de

- Resistencia del acero: $\mathbf{V}_{\mathsf{Rd,s}}$

- Resistencia desconchamiento: $V_{Rd,cp} \ge V^0_{Rd,cp} \cdot f_B \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{re,N}$

- Resistencia borde homigón: $V_{Rd,c} \ge V_{Rd,c}^0 \cdot f_B \cdot f_b \cdot f_b \cdot f_b$

Resistencia de diseño a cortante

Resistencia de diseño del acero V_{Rd,s}

Métrica			HUS-HR 6	HUS-HR 8	HUS-HR 10	HUS-HR 14
Profundidad mínima	$V_{\text{Rd,s}}$	[kN]	11,3	17,3	22,0	-
Profundidad reducida	$V_{\text{Rd,s}}$	[kN]	-	17,3	22,0	36,7
Profundidad estándar	$V_{\text{Rd,s}}$	[kN]	11,3	17,3	22,0	51,3

Resistencia de diseño por desconchamiento $V_{Rd,cp} \ge V_{Rd,cp}^0 \cdot f_B \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{re,N}$

		H	ormigón	no-fisura	do	Hormigón fisurado				
Métrica	HUS-HR	6	8	10	14	6	8	10	14	
Profundidad mínima					,		,			
h _{nom}	[mm]	30	60	60	-	30	60	60	-	
V ⁰ _{Rd,cp}	[kN]	-	15,7	21,0	-	-	11,2	15,0	-	
Profundidad reducida			-							
h _{nom}	[mm]	-	60	70	70	-	60	70	70	
V ⁰ _{Rd,cp}	[kN]	-	21,7	26,7	25,2	-	15,5	19,0	18,0	
Profundidad estándar			,		,		,			
h _{nom}	[mm]	55	80	90	110	55	80	90	110	
V ⁰ _{Rd,cp}	[kN]	15,2	34,4	40,2	53,6	10,9	24,6	28,7	38,3	

Resistencia de diseño por borde de hormigón $V_{Rd,c} \ge V_{Rd,c}^0 \cdot f_B \cdot f_B \cdot f_4$

		H	ormigón	no-fisura	do	Hormigón fisurado				
Métrica	HUS-HR	6	8	10	14	6	8	10	14	
Profundidad mínima (Datos técnicos Hilti)					,					
h _{nom}	[mm]	30	60	60	-	30	60	60	-	
$V^0_{Rd,c}$	[kN]	-	2,3	4,6	-	-	1,7	3,3	-	
Profundidad reducida			-							
h _{nom}	[mm]	-	60	70	70	_	60	70	70	
$V^0_{Rd,c}$	[kN]	-	1,9	2,8	3,8	-	1,4	2,0	2,7	
Profundidad estándar										
h _{nom}	[mm]	55	80	90	110	55	80	90	110	
$V^0_{Rd,c}$	[kN]	2,3	2,7	5,9	9,0	1,7	1,9	4,2	6,4	

Factores de influencia

Influencia de la resistencia del hormigón

Clase de resistencia del hormigón (ENV 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
$f_B = (f_{ck,cube}/25N/mm^2)^{0,5} a)$	1	1,1	1,22	1,34	1,41	1,48	1,55

a) f_{ck,cube} = Resistencia a compresion del hormigón, medida en probeta cúbica.

Influencia de la distancia a borde^{a)}

c/c _{cr,N}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
$f_{1,N} = 0.7 + 0.3 \cdot c/c_{cr,N} \le 1$	0,73	0,76	0,79	0,82	0,85	0,88	0,91	0,94	0,97	1
$f_{2,N} = 0.5 \cdot (1 + c/c_{cr,N}) \le 1$	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1

La distancia a borde no debe ser menor que la distancia a borde mínima c_{min} recogida en la tabla con las condiciones de colocación.
 Estos factores de influencia deben ser considerados para todos los valores de distancia a borde.

Influencia de la separación entre anclajes a)

s/s _{cr,N}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
$f_{3,N} = 0.5 \cdot (1 + s/s_{cr,N}) \le 1$	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1

La separación entre anclajes no debe ser menor que la separación mínima s_{min} recogida en la tabla con los datos de colocación. Estos factores de influencia deben ser considerados para cada separación entre anclajes.

Influencia del armado

Métrica		HUS-HR 6		HUS-HR 8			H	US-HR	HUS-HR 14		
h _{nom} [mm]		30	55	50	60	80	60	70	80	70	110
h _{ef}	[mm]	23	45	38	47	64	46	54	71	52	86
$f_{re,N} = 0.5 + h_{ef}/200 \text{mm} \le 1$		0,62	0,73	0,69	0,74	0,82	0,73	0,77	0,86	0,76	0,93

a) Este factor se aplica sólo para armado denso. Si, en el area del anclaje, existe armado con una separación ≤ 150 mm (cualquier diámetro) o con un diámetro ≤ 10 mm y una separación ≤ 100 mm, entonces se puede aplicar un factor f_{re,N} = 1.

Influencia del ángulo de la carga aplicada con la dirección perpendicular al borde libre

	•	.			,				
Ángulo ß		0° - 55°	60°	65°	70°	75°	80°	85°	90° - 180°
$f_{\mathbb{S}}$	B	1,00	1,07	1,14	1,23	1,35	1,50	1,71	2,00

Influencia del espesor del material base

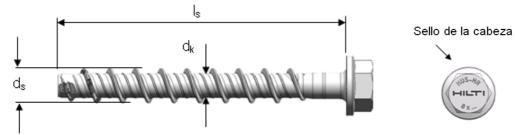
h/c	0,15	0,3	0,45	0,6	0,75	0,9	1,05	1,2	1,35	≥ 1,5
$f_h = \{h/(1,5 \cdot c)\}^{-1/3} \le 1$	2,15	1,71	1,49	1,36	1,26	1,19	1,13	1,08	1,04	1

Influencia de la separación entre anclajes y la distancia a borde ^{a)} para resistencia del hormigón por borde: f₄

c/h _{ef}	Anclaje		Grupo de dos anclajes s/h _{ef}													
O/ Frer	aislado	0,75	1,50	2,25	3,00	3,75	4,50	5,25	6,00	6,75	7,50	8,25	9,00	9,75	10,50	11,25
0,50	0,35	0,27	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35
0,75	0,65	0,43	0,54	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65
1,00	1,00	0,63	0,75	0,88	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1,25	1,40	0,84	0,98	1,12	1,26	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40
1,50	1,84	1,07	1,22	1,38	1,53	1,68	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84
1,75	2,32	1,32	1,49	1,65	1,82	1,98	2,15	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32
2,00	2,83	1,59	1,77	1,94	2,12	2,30	2,47	2,65	2,83	2,83	2,83	2,83	2,83	2,83	2,83	2,83
2,25	3,38	1,88	2,06	2,25	2,44	2,63	2,81	3,00	3,19	3,38	3,38	3,38	3,38	3,38	3,38	3,38
2,50	3,95	2,17	2,37	2,57	2,77	2,96	3,16	3,36	3,56	3,76	3,95	3,95	3,95	3,95	3,95	3,95
2,75	4,56	2,49	2,69	2,90	3,11	3,32	3,52	3,73	3,94	4,15	4,35	4,56	4,56	4,56	4,56	4,56
3,00	5,20	2,81	3,03	3,25	3,46	3,68	3,90	4,11	4,33	4,55	4,76	4,98	5,20	5,20	5,20	5,20
3,25	5,86	3,15	3,38	3,61	3,83	4,06	4,28	4,51	4,73	4,96	5,18	5,41	5,63	5,86	5,86	5,86
3,50	6,55	3,51	3,74	3,98	4,21	4,44	4,68	4,91	5,14	5,38	5,61	5,85	6,08	6,31	6,55	6,55
3,75	7,26	3,87	4,12	4,36	4,60	4,84	5,08	5,33	5,57	5,81	6,05	6,29	6,54	6,78	7,02	7,26
4,00	8,00	4,25	4,50	4,75	5,00	5,25	5,50	5,75	6,00	6,25	6,50	6,75	7,00	7,25	7,50	7,75
4,25	8,76	4,64	4,90	5,15	5,41	5,67	5,93	6,18	6,44	6,70	6,96	7,22	7,47	7,73	7,99	8,25
4,50	9,55	5,04	5,30	5,57	5,83	6,10	6,36	6,63	6,89	7,16	7,42	7,69	7,95	8,22	8,49	8,75
4,75	10,35	5,45	5,72	5,99	6,27	6,54	6,81	7,08	7,36	7,63	7,90	8,17	8,45	8,72	8,99	9,26
5,00	11,18	5,87	6,15	6,43	6,71	6,99	7,27	7,55	7,83	8,11	8,39	8,66	8,94	9,22	9,50	9,78
5,25	12,03	6,30	6,59	6,87	7,16	7,45	7,73	8,02	8,31	8,59	8,88	9,17	9,45	9,74	10,02	10,31
5,50	12,90	6,74	7,04	7,33	7,62	7,92	8,21	8,50	8,79	9,09	9,38	9,67	9,97	10,26	10,55	10,85

a) La separación entre anclajes y la distancia a borde no debe ser menor que la separación mínima s_{min} y la distancia a borde mínima c_{min}

Cargas combinadas (Tracción y Cortante)

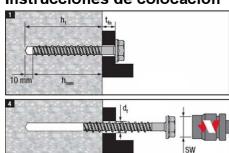

Para cargas combinadas (Tracción y Cortante) ver sección "Diseño de Anclajes".

Valores precalculados

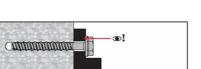
Resistencia de diseño de acuerdo con ETAG 001, Anexo C recogido en la ETA-08/0307 edición 2008-12-12. Todos los valores corresponden a Hormigón C $20/25 - f_{ck,cubo}$ =25 N/mm². Los datos técnicos indicados por Hilti para profundidad mínima de empotramiento no forman parte de esta homologación .

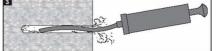
Dimensiones del anclaje

Dimensiones


Versión de anclaje	l _s [mm]	d _s [mm]	d _k [mm]
HUS-HR 6	35 70	7,5	5,4
HUS-HR 8	55 105	10,1	7,1
HUS-HR 10	65 130	12,3	8,4
HUS-HR 14	80 135	16,5	12,6

Colocación


Equipo recomendado para la colocación


Métrica	HUS-HR 6	HUS-HR 8	HUS-HR 10	HUS-HR 14
Martillo TE	Hilti TE 6	Hilti TE 6	Hilti TE 16	Hilti -TE 16
Broca	TE-C3X 6/17	TE-C3X 8/17	TE-C3X 10/22	TE-C3X 14/22
Vaso de montaje	S-NSD 13 ½ (L)	S-NSD 13 ½ (L)	S-NSD 15 ½ (L)	S-NSD 21 ½
Atornilladora de impacto	Hilti SIW 144 or 121 Hilti TKI 2500		Hilti SI 100	

Instrucciones de colocación

Para infomación detallada sobre la instalación ver las instrucciones incluidas en la caja del producto.

Materiales Propiedades mecánicas

Métrica		HUS-HR 6	HUS-HR 8	HUS-HR 10	HUS-HR 14	
Tensión nominal última f _{uk}	[N/mm²]	1040	870	950	820	
Sección resistente A _s	[mm²]	23	39	55	125	
Módulo resistente W	[mm³]	15,5	34,4	58,2	196,4	
Momento resistente M _{Rd,s}	[Nm]	19,3	35,9	66,3	193,2	

Componente	Material
Tornillo hexagonal en acero inoxidable para hormigón.	Acero Inoxidable (calidad A4)