

HRD Anclaje Universal

Versión del anclaje	Beneficios
HRD-C 8x HRD CR 8x	Tornillo con doble rosca que permite aunar velocidad en montaje y máxima expansión
HRD-C 10x HRD-CR 10x HRD-CR2 10x	Anclaje universal: por su forma de trabajo válido para la gran mayoría de materiales base Máxima flexibilidad: capacidad de
HRD-H 10x HRD-HR 10x HRD-HR2 10x	empotrar con el mismo anclaje en el rango de 50 a 70 mm Anclaje homologado con normativa europea incluyendo datos técnicos con
HRD-K 10x HRD-KR 10x HRD-KR2 10x	ladrillos españoles Amplio rango de fijación; versiones disponibles para llegar a fijar 260 mm
HRD-P 10x HRD-PR 10x HRD-PR2 10x	4 versiones con 3 combinaciones de acero: galvanizado, Inox A2 e INOX A4 Anclaje premontado: máxima productividad y garantía de montaje

Hormigón

Zona traccionada

Ladrillo macizo

Ladrillo hueco/ladrill o perforado

Hormigón aireado

Marcos de ventana

Resistencia al fuego

Homologación Euroepa

Marcado CE

Homologaciones / Certificados

Descripción	Authorirad / Laboratorio	No. / fecha de publicación
European technical approval a)	DIBt, Berlin	ETA-07/0219 / 2010-08-12
Fire test report b)	MFPA, Leipzig	PB III/B-07-306 / 2007-09-05
Informe sobre fijación de marcos de ventana ^{b)}	Ift, Rosenheim	Ift report 105 33035 / 20007-07-09

Todos los datos de esta sección según la homologación europea ETA-07/0219, versión 2007-09-17. El uso del anclaje queda limitado para fijación múltiple en aplicaciones no estructurales.

Datos de cargas según ETAG 020

Toda la información en esta sección es válida para

- Instalación correcta (ver instrucciones de colocación)
- Sin influencia entre anclajes ni de borde
- Materiales base según especificaciones de las tablas Espesor mínimo de material base
- Fallo de acero
- Carga cortante sin brazo de palanca
- Fijación múltiple
- Todos los datos resaltados en gris son datos adicionales facilitados por Hilti pero no forman parte actualmente de la homologación

^{a)} Sólo para fijación multiple

sólo disponible para HRD 8

Resistencia característica, sin condiciones adversas durante la instalación y el servicio del anclaje

Versión del anclaje				HRD 8		HRD 10	
				h _{nom} =50mm	h _{nom} =50mm	h _{nom} =70mm	h _{nom} =90mm
Hormigón C 12/15		$N_{\text{Rk},0}$	[kN]	3,8	5,0	9,5	-
(fijación múltiple)		V _{Rk}	[kN]	6,9/6,6 b)	10,6	10,6	-
Hormigón C 16/20 –C 50/60		$N_{\text{Rk},0}$	[kN]	5,5	7,0	13,5	-
(fijación múltiple)		V _{Rk}	[kN]	6,9/6,6 b)	10,6	10,6	-
Ladrillo macizo de arcilla Mz 2,0	f _b ≥ 20 N/mm²	F _{Rk,0}	[kN]	2,6	3,0 5,8 ^{d)}	c)	-
DIN V 105-100 / EN 771-1	f _b ≥ 10 N/mm²	F _{Rk,0}	[kN]	1,75	2,0 4,1 ^{d)}	c)	-
Ladrillo macizo calizo KS 2,0	f _b ≥ 20 N/mm²	F _{Rk,0}	[kN]	2,9	3,0 6,2 ^{d)}	c)	-
DIN V 106 / EN 771-2	f _b ≥ 10 N/mm²	F _{Rk,0}	[kN]	2,0	2,0 4,3 ^{d)}	c)	-
Ladrillo aligerado hueco	f _b ≥ 20 N/mm²	F _{Rk,0}	[kN]	-	3,5 6,7 ^{d)}	c)	-
VbI 0,9 DIN V 18151-100 / EN 771-3	f _b ≥ 10 N/mm²	F _{Rk,0}	[kN]	-	2,5 4,7 ^{d)}	c)	-
	f _b ≥ 6 N/mm ²	F _{Rk,0}	[kN]	0,70	-	-	-
Ital. Ladrillo macizo Tufo	f _b ≥ n/a	F _{Rk,0}	[kN]	2,0	-	-	-
Bloque cerámico Hlz B 12/1,2 A ^{e)}	f _b ≥ 12 N/mm ²	F _{Rk,0}	[kN]	0,60	-	-	-
	f _b ≥ 8 N/mm²	F _{Rk,0}	[kN]	-	0,5	0,9	-
Ladrillo perforado de arcilla	f _b ≥ 10 N/mm²	F _{Rk,0}	[kN]	-	0,7	1,2	-
Hlz 1,0-2DF B ^{e)}	$f_b \ge 12 \text{ N/mm}^2$	F _{Rk,0}	[kN]	-	0,8	1,4	-
	$f_b \ge 20 \text{ N/mm}^2$	F _{Rk,0}	[kN]	-	1,4	2,4	-
Ladrillo hueco de arcilla Poroton T8 C e)	f _b ≥ 6 N/mm²	F _{Rk,0}	[kN]	-	0,9	1,8	-
Ladrillo perforado de arcilla	f _b ≥ 28 N/mm²	F _{Rk,0}	[kN]	-	2,0	3,3	-
VHIz 1,6-2DF D e)	$f_b \ge 50 \text{ N/mm}^2$	F _{Rk,0}	[kN]	-	2,9	4,7	-
Ladrillo perforado calizo KSL 12/1,4 E ^{e)}	$f_b \ge 12 \text{ N/mm}^2$	F _{Rk,0}	[kN]	1,1	-	-	-
	f _b ≥ 8 N/mm²	F _{Rk,0}	[kN]	-	1,4	1,6	-
Ladrillo perforado calizo	f _b ≥ 10 N/mm²	F _{Rk,0}	[kN]	-	1,8	2,0	-
KSL R 1,6-16DF F ^{e)}	f _b ≥ 12 N/mm²	F _{Rk,0}	[kN]	-	2,1	2,4	-
	f _b ≥ 16 N/mm²	F _{Rk,0}	[kN]	-	2,9	3,2	-
Ladrillo perforado Hbl 2/0,8 G ^{e)}	$f_b \ge 2 \text{ N/mm}^2$	F _{Rk,0}	[kN]	0,70	-	-	-
Bloque hueco de hormigón Hbl 1,2-12DF H ^{e)}	f _b ≥ 2 N/mm ²	F _{Rk,0}	[kN]	-	0,4	0,8	-
Hbl 1,2-12DF H ^{e)}	f _b ≥ 6 N/mm ²	F _{Rk,0}	[kN]	-	1,3	2,6	-
Ital. Ladrillo hueco Mattone I ^{e)}	f _b ≥ 22 N/mm²	F _{Rk,0}	[kN]	1,6	-	-	-
Ital. Ladrillo hueco Poroton P700 J ^{e)}	f _b ≥ 15 N/mm²	F _{Rk,0}	[kN]	-	-	0,8	-

Resistencia característica, sin condiciones adversas durante la instalación y el servicio del anclaje

Versión del anclaje	Versión del anclaje			HRD 8		HRD 10	
				h _{nom} =50mm	h _{nom} =50mm	h _{nom} =70mm	h _{nom} =90mm
Ital. Ladrillo hueco Doppio Uni K+L ^{e)}		F _{Rk,0}	[kN]	1,2 (K)	-	2,0 (L)	-
España. Ladrillo perforado Rojo hydrofugano M ^{e)}	f _b ≥ 40 N/mm²	F _{Rk,0}	[kN]	0,95	-	-	-
España. Ladrillo perforado N ^{e)}	$f_b \ge 26 \text{ N/mm}^2$	F _{Rk,0}	[kN]	-	2,1	2,3	-
España. Ladrillo perforado Clinker mediterraneo O e)	f _b ≥ 75 N/mm²	F _{Rk,0}	[kN]	-	-	1,5	-
Francia. Ladrillo hueco P e)	$f_b \ge 6 \text{ N/mm}^2$	$F_{Rk,0}$	[kN]	0,65	-	-	-
I la maria da a cina a da	AAC 2	F _{Rk,0}	[kN]	-	-	0,9	1,3
Hormigón aireado AAC	AAC 4	F _{Rk,0}	[kN]	0,75	-	2,3	3,0
EN 771-4	AAC 6	F _{Rk,0}	[kN]	0,75	-	3,0 3,7 ^{d)}	3,0 4,8 ^{d)}

Resistencia característica, considerando condiciones adversas durante la instalación y el servicio del anclaje

Versión del anclaje				HRD 8		HRD 10	
				h _{nom} =50mm	h _{nom} =50mm	h _{nom} =70mm	h _{nom} =90mm
Hormigón C 12/15		N _{Rk}	[kN]	2,0	3,0	6,0	-
(fijación múltiple)		V_{Rk}	[kN]	6,9/6,6 b)	10,6	10,6	-
Hormigón C 16/20 –C 50/60		N _{Rk}	[kN]	3,0	4,5	8,5	-
(fijación múltiple)		V_{Rk}	[kN]	6,9/6,6 b)	10,6	10,6	-
Ladrillo macizo de arcilla	f _b ≥ 20 N/mm²	F _{Rk}	[kN]	1,5	3,0 4,5 ^{d)}	c)	-
Mz 2,0 DIN V 105-100 / EN 771-1	f _b ≥ 10 N/mm²	F _{Rk}	[kN]	1,2	2,0 3,0 ^{d)}	c)	-
Ladrillo macizo calizo	f _b ≥ 20 N/mm²	F _{Rk}	[kN]	2,5	3,0 4,5 ^{d)}	c)	-
KS 2,0 DIN V 106 / EN 771-2	f _b ≥ 10 N/mm²	F _{Rk}	[kN]	2,0	2,0 3,0 ^{d)}	c)	-
Ladrillo aligerado hueco	f _b ≥ 20 N/mm²	F _{Rk}	[kN]	-	3,5 6,0 ^{d)}	c)	-
VbI 0,9 DIN V 18151-100 / EN 771-3	$f_b \ge 10 \text{ N/mm}^2$	F _{Rk}	[kN]	-	2,5 4,5 ^{d)}	c)	-
	$f_b \ge 6 \text{ N/mm}^2$	F _{Rk}	[kN]	0,50	-	-	-
Ital. Ladrillo macizo Tufo	f _b ≥ n/a	F _{Rk}	[kN]	1,4	-	-	-

Resistencia característica, considerando condiciones adversas durante la instalación y el servicio del anclaje

Versión del anclaje				HRD 8		HRD 10	
				h _{nom} =50mm	h _{nom} =50mm	h _{nom} =70mm	h _{nom} =90mm
Bloque cerámico de arcilla Hlz B 12/1,2 A ^{e)}	f _b ≥ 12 N/mm ²	F _{Rk}	[kN]	0,50	-	-	-
	f _b ≥ 8 N/mm²	F _{Rk}	[kN]	-	0,4	0,75	-
Ladrillo perforado de arcilla	f _b ≥ 10 N/mm²	F _{Rk}	[kN]	-	0,5	0,9	-
Hlz 1,0-2DF B ^{e)}	f _b ≥ 12 N/mm²	F _{Rk}	[kN]	-	0,6	0,9	-
	$f_b \ge 20 \text{ N/mm}^2$	F_{Rk}	[kN]	-	0,9	1,5	-
Ladrillo hueco de arcillabrick Poroton T8 C e)	f _b ≥ 6 N/mm²	F _{Rk}	[kN]	-	0,75	1,5	-
Ladrillo perforado de arcilla	$f_b \ge 28 \text{ N/mm}^2$	F _{Rk}	[kN]	-	2,0	2,5	-
VHIz 1,6-2DF D e)	$f_b \ge 50 \text{ N/mm}^2$	F _{Rk}	[kN]	-	3,0	3,5	-
Ladrillo perforado calizo KSL 12/1,4 E ^{e)}	f _b ≥ 12 N/mm ²	F _{Rk}	[kN]	0,75	-	-	-
	f _b ≥ 8 N/mm²	F _{Rk}	[kN]	-	0,9	1,2	-
Ladrillo perforado calizo	$f_b \ge 10 \text{ N/mm}^2$	F _{Rk}	[kN]	-	1,2	1,5	-
KSL R 1,6-16DF F ^{e)}	$f_b \ge 12 \text{ N/mm}^2$	$F_{Rk} \\$	[kN]	-	1,5	2,0	-
	$f_b \ge 16 \text{ N/mm}^2$	F_{Rk}	[kN]	-	2,0	2,5	-
Ladrillo aligerado hueco Hbl 2/0,8 G ^{e)}	$f_b \ge 2 \text{ N/mm}^2$	F_{Rk}	[kN]	0,30	-	-	-
Bloque de hormigón aligerado hueco	$f_b \ge 2 \text{ N/mm}^2$	F _{Rk}	[kN]	-	0,5	0,75	-
Hbl 1,2-12DF H ^{e)}	$f_b \ge 6 \text{ N/mm}^2$	F_{Rk}	[kN]	-	1,2	2,0	-
Ital. Bloque hueco Mattone	f _b ≥ 22 N/mm²	F_{Rk}	[kN]	1,5	-	-	-
Ital. Bloque hueco Poroton P700 J ^{e)}	f _b ≥ 15 N/mm²	F _{Rk}	[kN]	-	-	0,6	-
Ital. Ladrillo perforado Doppio Uni K+L ^{e)}	f _b ≥ 25 N/mm²	F _{Rk}	[kN]	0,9 (K)	-	1,5 (L)	-
España. Ladrillo perforado Rojo hydrofugano M ^{e)}	f _b ≥ 40 N/mm²	F _{Rk}	[kN]	0,60	-	-	-
España. Ladrillo perforado Ladrillo perforado N ^{e)}	f _b ≥ 26 N/mm²	F _{Rk}	[kN]	-	1,5	2,0	-
España. Ladrillo perforado Clinker mediterraneo O ^{e)}	$f_b \ge 75 \text{ N/mm}^2$	F _{Rk}	[kN]	-	-	1,5	-
Bloque hueco P e)	$f_b \ge 6 \text{ N/mm}^2$	F _{Rk}	[kN]	0,50	-	-	_
	AAC 2	F_{Rk}	[kN]	-	-	0,9	0,9
Hormigón aireado	AAC 4	F_{Rk}	[kN]	-	-	2,0	2,5
AAC	AAC 6	F _{Rk}	[kN]	-	-	3,0	3,0
	,,,,,,	F _{Rk}	[kN]		-	3,5 ^{d)}	4,5 ^{d)}

Resistencia de diseño

Versión del anclaje				HRD 8		HRD 10	
				h _{nom} =50mm	h _{nom} =50mm	h _{nom} =70mm	h _{nom} =90mm
Hormigón C 12/15		N_{Rd}	[kN]	1,1	1,7	3,3	-
(fijación múltiple)		V_{Rd}	[kN]	5,5/5,2 b)	8,5	8,5	-
Hormigón C 16/20 -C 50/60		N_{Rd}	[kN]	1,7	2,5	4,7	-
(fijación múltiple)		V _{Rd}	[kN]	5,5/5,2 b)	8,5	8,5	-
Solid clay brick Mz 2,0	$f_b \ge 20 \text{ N/mm}^2$	F_{Rd}	[kN]	0,6	1,2 1,8 ^{d)}	c)	-
DIN V 105-100 / EN 771-1	f _b ≥ 10 N/mm²	F_{Rd}	[kN]	0,48	0,8 1,2 ^{d)}	c)	-
Solid sand-lime brick	f _b ≥ 20 N/mm²	F_{Rd}	[kN]	1,0	1,2 1,8 ^{d)}	c)	-
KS 2,0 DIN V 106 / EN 771-2	f _b ≥ 10 N/mm²	F _{Rd}	[kN]	0,8	0,8 1,2 ^{d)}	c)	-
Ladrillo aligerado hueco	f _b ≥ 20 N/mm²	F _{Rd}	[kN]	-	1,4 2,4 ^{d)}	c)	-
Vbl 0,9 DIN V 18151-100 / EN 771-3	f _b ≥ 10 N/mm²	F _{Rd}	[kN]	-	1,0 1,8 ^{d)}	c)	-
	$f_b \ge 6 \text{ N/mm}^2$	F_{Rd}	[kN]	0,2	-	-	-
Ital. Ladrillo macizo Tufo	f _b ≥ n/a	F_{Rd}	[kN]	0,56	-	-	-
Bloque cerámico de arcilla Hlz B 12/1,2 A ^{e)}	f _b ≥ 12 N/mm ²	F _{Rd}	[kN]	0,2	-	-	-
	$f_b \ge 8 \text{ N/mm}^2$	F_{Rd}	[kN]	-	0,16	0,3	-
Ladrillo perforado de arcilla	f _b ≥ 10 N/mm²	F_{Rd}	[kN]	-	0,2	0,36	-
HIz 1,0-2DF B e)	f _b ≥ 12 N/mm²	F_{Rd}	[kN]	-	0,24	0,36	-
	f _b ≥ 20 N/mm²	F _{Rd}	[kN]	-	0,36	0,6	-
Ladrillo hueco de arcilla Poroton T8 C e)	f _b ≥ 6 N/mm²	F _{Rd}	[kN]	-	0,3	0,6	-
Ladrillo perforado de arcilla	f _b ≥ 28 N/mm²	F _{Rd}	[kN]	-	0,8	1,0	-
VHIz 1,6-2DF D e)	f _b ≥ 50 N/mm²	F_{Rd}	[kN]	-	1,2	1,4	-
Ladrillo perforado calizo KSL 12/1,4 E ^{e)}	$f_b \ge 12 \text{ N/mm}^2$	F_{Rd}	[kN]	0,3	-	-	-
	$f_b \ge 8 \text{ N/mm}^2$	F_{Rd}	[kN]	-	0,36	0,48	-
Ladrillo perforado calizo	f _b ≥ 10 N/mm²	F _{Rd}	[kN]	-	0,48	0,6	-
KSL R 1,6-16DF F ^{e)}	f _b ≥ 12 N/mm²	F _{Rd}	[kN]	-	0,6	0,8	-
	f _b ≥ 16 N/mm²	F _{Rd}	[kN]	-	0,8	1,0	-
Ladrillo aligerado hueco Hbl 2/0,8 G ^{e)}	f _b ≥ 2 N/mm ²	F _{Rd}	[kN]	0,12	-	-	-
Bloque de hormigón aligerado hueco	f _b ≥ 2 N/mm ²	F _{Rd}	[kN]	-	0,2	0,3	-
Hbl 1,2-12DF H ^{e)}	$f_b \ge 6 \text{ N/mm}^2$	F _{Rd}	[kN]	-	0,48	0,8	-
Ital. Bloque hueco Mattone I ^{e)}	f _b ≥ 22 N/mm²	F _{Rk}	[kN]	0,6	-	-	-
Ital. Bloque hueco Poroton P700 J ^{e)}	f _b ≥ 15 N/mm²	F _{Rd}	[kN]	-	-	0,24	-
Ital. Ladrillo perforado Doppio Uni K+L ^{e)}		F_{Rd}	[kN]	0,36 (K)	-	0,6 (L)	-

Resistencia de diseño

Versión del anclaje			HRD 8		HRD 10		
				h _{nom} =50mm	h _{nom} =50mm	h _{nom} =70mm	h _{nom} =90mm
España. Ladrillo perforado Rojo hydrofugano M ^{e)}	f _b ≥ 40 N/mm²	F _{Rd}	[kN]	0,24	-	-	-
España. Ladrillo perforado Ladrillo perforado N ^{e)}	f _b ≥ 26 N/mm²	F_{Rd}	[kN]	-	0,6	0,8	-
España. Ladrillo perforado Clinker mediterraneo O ^{e)}	$f_b \ge 75 \text{ N/mm}^2$	F_{Rd}	[kN]	-	-	0,6	-
Bloque hueco P e)	$f_b \ge 6 \text{ N/mm}^2$	F_{Rd}	[kN]	0,20	-	-	-
	AAC 2	F_{Rd}	[kN]	-	-	0,45	0,45
Hormigón aireado AAC	AAC 4	F_{Rd}	[kN]	0,21	-	1,0	1,25
EN 771-4	^ ^ C C	F_{Rd}	[kN]	0,21	-	1,5	1,5
	AAC 6	F_{Rd}	[kN]		-	1,75 ^{d)}	2,25 ^{d)}

Cargas recomendadas a)

Versión del anclaje				HRD 8		HRD 10	
				h _{nom} =50mm	h _{nom} =50mm	h _{nom} =70mm	h _{nom} =90mm
Hormigón C 12/15		Nrec	[kN]	0,8	1,2	2,4	-
(fijación múltiple)		V _{rec}	[kN]	3,9/3,7 b)	6,1	6, 1	-
Hormigón C 16/20 –C 50/60		Nrec	[kN]	1,2	1,8	3,4	-
(fijación múltiple)		Vrec	[kN]	3,9/3,7 b)	6,1	6, 1	-
Ladrillo macizo de arcilla	f _b ≥ 20 N/mm²	Frec	[kN]	0,42	0,85 1,28 ^{a)}	c)	-
Mz 2,0 DIN V 105-100 / EN 771-1	f _b ≥ 10 N/mm²	Frec	[kN]	0,34	0,57 0,85 ^{d)}	c)	-
Ladrillo macizo calizo	f _b ≥ 20 N/mm²	Frec	[kN]	0,7	0,85 1,28 ^{d)}	c)	-
KS 2,0 DIN V 106 / EN 771-2	f _b ≥ 10 N/mm²	Frec	[kN]	0,57	0,57 0,85 ^{d)}	c)	-
Ladrillo aligerado hueco	f _b ≥ 20 N/mm²	Frec	[kN]	-	1,0 1,71 ^{d)}	c)	-
VbI 0,9 DIN V 18151-100 / EN 771-3	f _b ≥ 10 N/mm²	Frec	[kN]	-	0,71 1,28 ^{d)}	c)	-
Birt V Total Tool Entri V	$f_b \ge 6 \text{ N/mm}^2$	Frec	[kN]	0,14	-	-	-
Ital. Ladrillo macizo Tufo	f _b ≥ n/a	Frec	[kN]	0,4	-	-	-

6 / 2010

Cargas recomendadas a)

Versión del anclaje				HRD 8		HRD 10	
				h _{nom} =50mm	h _{nom} =50mm	h _{nom} =70mm	h _{nom} =90mm
Bloque cerámico de arcilla Hlz B 12/1,2 A ^{e)}	f _b ≥ 12 N/mm ²	Frec	[kN]	0,14	-	-	-
	f _b ≥ 8 N/mm²	Frec	[kN]	-	0,11	0,21	-
Ladrillo perforado de arcilla	f _b ≥ 10 N/mm²	Frec	[kN]	-	0,14	0,25	-
HIz 1,0-2DF B e)	f _b ≥ 12 N/mm²	Frec	[kN]	-	0,17	0,25	-
	f _b ≥ 20 N/mm²	Frec	[kN]	-	0,25	0,42	-
Ladrillo hueco de arcillabrick Poroton T8 C ^{e)}	f _b ≥ 6 N/mm²	Frec	[kN]	-	0,21	0,42	-
Ladrillo perforado de arcilla	f _b ≥ 28 N/mm²	Frec	[kN]	-	0,57	0,71	-
VHIz 1,6-2DF D e)	f _b ≥ 50 N/mm²	Frec	[kN]	-	0,85	1,0	-
Ladrillo perforado calizo KSL 12/1,4 E ^{e)}	f _b ≥ 12 N/mm ²	Frec	[kN]	0,21	-	-	-
	f _b ≥ 8 N/mm²	Frec	[kN]	-	0,25	0,34	-
Ladrillo perforado calizo	f _b ≥ 10 N/mm²	Frec	[kN]	-	0,34	0,42	-
KSL R 1,6-16DF F e)	f _b ≥ 12 N/mm²	Frec	[kN]	-	0,42	0,57	-
	f _b ≥ 16 N/mm²	Frec	[kN]	-	0,57	0,71	-
Ladrillo aligerado hueco Hbl 2/0,8 G ^{e)}	f _b ≥ 2 N/mm ²	Frec	[kN]	0,09	-	-	-
Bloque de hormigón aligerad	$f_b \ge 2 \text{ N/mm}^2$	Frec	[kN]	-	0,14	0,21	-
Hbl 1,2-12DF H ^{e)}	f _b ≥ 6 N/mm ²	Frec	[kN]	-	0,34	0,57	-
Ital. Bloque hueco Mattone I ^{e)}	f _b ≥ 22 N/mm²	Frec	[kN]	0,43	-	-	-
Ital. Bloque hueco Poroton P700 J ^{e)}	f _b ≥ 15 N/mm²	Frec	[kN]	-	-	0,17	-
Ital. Ladrillo perforado Doppio Uni K+L ^{e)}	f _b ≥ 25 N/mm²	Frec	[kN]	0,25 (K)	-	0,42 (L)	-
España. Ladrillo perforado Rojo hydrofugano M ^{e)}	f _b ≥ 40 N/mm²	Frec	[kN]	0,17	-	-	-
España. Ladrillo perforado Ladrillo perforado N ^{e)}	f _b ≥ 26 N/mm²	Frec	[kN]	-	0,43	0,57	-
España. Ladrillo perforado Clinker mediterraneo O ^{e)}	$f_b \ge 75 \text{ N/mm}^2$	Frec	[kN]	-	-	0,42	-
Bloque hueco ladrillo P ^{e)}	f _b ≥ 6 N/mm²	Frec	[kN]	0,14	-	-	-
	AAC 2	Frec	[kN]	-	-	0,32	0,32
Hormigón aireado AAC	AAC 4	Frec	[kN]	0,15	-	0,71	0,89
EN 771-4	AAC 6	Frec	[kN]	0,15	-	1,07	1,07
	770 0	Frec	[kN]	0,13	-	1,25 ^{d)}	1,6 ^{d)}

El coeficiente de seguridad parcial para las acciones es de γ = 1,4. Los coeficientes de seguridad parciales para las acciones dependen del tipo de carga y deben tomarse de las normativas nacionales. De acuerdo con la ETAG 001, anexo C, el coeficiente de seguridad parcial es γ_G = 1,35 para acciones permanentes y γ_Q = 1,5 para acciones variables.

b) Datos para HRD 8 en version inoxidable

^{c)} Es posible deteminar datos de carga mediante ensayos en obra; es posible obtener datos para h_{nom} = 50mm.

^{d)} Válido para distancias a borde c≥150mm, los valores intermedios pueden ser interpolados.

En la tabla de página siguiente podrá enconrtar los detalles de los materiales base.

Especificación sobre los materiales base

Tipo de ladrillo	ios materiales base	Tipo de ladrillo	
Especificación	Croquis/método de taladro	Especificación	Croquis/método de taladro
ladrillo A Bloque cerámico de arcilla HIz B 12/1,2 DIN V 105-100 / EN 771-1 LxWxH [mm]: 300x240x248 hmin [mm]: 240	Taladro a rotación	ladrillo I Ital. Bloque hueco Mattone EN 771-1 LxWxH [mm]: 240x180x100 hmin [mm]: 180	Taladro a rotación
ladrillo B Ladrillo perforado de arcilla Hlz 1,0-2DF DIN V 105-100 / EN 771-1 LxWxH [mm]: 240x115x113 hmin [mm]: 110	Taladro a rotopercusión	ladrillo J Ital. Bloque hueco Poroton P700 EN 771-1 LxWxH [mm]: 225x300x190 hmin [mm]: 300	00000000000000000000000000000000000000
ladrillo C Ladrillo hueco de arcilla Poroton T8 Z-17.1-982 LxWxH [mm]: 248x365x249 hmin [mm]: 365	Taladro a rotación	ladrillo K Ital. Ladrillo perforado Doppio Uni EN 771-1 LxWxH [mm]: 230x120x100 hmin [mm]: 120	Taladro a rotación
ladrillo D Ladrillo perforado de arcilla VHIz 1,6-2DF DIN V 105-100 / EN 771-1 LxWxH [mm]: 240x115x113 hmin [mm]: 115	Taladro a rotopercusión	ladrillo L Ital. Ladrillo perforado Doppio Uni EN 771-1 LxWxH [mm]: 250x120x190 h _{min} [mm]: 120	OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
ladrillo E Ladrillo perforado calizo KSL 12/1,4 DIN V 106 / EN 771-2 LxWxH [mm]: 240x248x248 h _{min} [mm]: 240	Taladro a rotopercusión	ladrillo M España. Ladrillo perforado Rojo hydrofugano EN 771-1 LxWxH [mm]: 240x115x50 hmin [mm]: 115	Taladro a rotación
ladrillo F Ladrillo perforado calizo KS L R 1,6-16DF DIN V 106-100 / EN 771-2 LxWxH [mm]: 480x240x248 hmin [mm]: 240	Taladro a rotación	ladrillo N España. Ladrillo perforado EN 771-1 LxWxH [mm]: 240x110x100 hmin [mm]: 110	Taladro a rotación
ladrillo G Ladrillo aligerado hueco Hbl 2/0,8 DIN V 18151-100 / EN 771-3 LxWxH [mm]: 497x240x248 hmin [mm]: 240	Taladro a rotopercusión	ladrillo O España. Ladrillo perforado Clinker mediterraneo EN 771-1 LxWxH [mm]: 240x113x50 hmin [mm]: 113	OOOOOO OOOOOO Taladro a rotopercusión
ladrillo H Bloque de hormigón aligerado hueco Hbl 1,2-12DF DIN V 18151 / EN 771-3 LxWxH [mm]: 497x175x238 hmin [mm]: 175	Taladro a rotación	ladrillo P Bloque hueco EN 771-1 LxWxH [mm]: 210x198x hmin [mm]: 210	Taladro a rotación

Condiciones para fijación múltiple

La definición de fijación multiple de acuerdo a los estados miembros viene recogida en la ETAG 001 parte 6, anexo 1. En ausencia de una definición en el estado miembro los siguientes valores pueden tomarse por defecto

Número mínimo de puntos de fijación	Número mínimo de anclajes por punto de fijación	Carga de diseño máxima N _{Sd} por punto de fijación ^{a)}
3	1	3 kN
4	1	4,5 kN

a) El valor de diseño N_{Sd} indicado asume que todos los puntos trabajan son considerados en el diseño.

Rango de temperaturas de servicio

El anclaje Hilti HRD puede ser instalado dentro del siguiente rango de temperaturas:

Rango de temperaturas	Temperatura del material base	Máxima temperatura del material base en el largo plazo	Máxima temperatura del material base en el corto plazo
Rango de temperaturas	-40 °C to +80 °C	+50 °C	+80 °C

Máxima temperatura del material base en el corto plazo

Como temperatura del material en el corto plazo se considera aquella que sucede en breves periodos de tiempo, por ejemplo las debidas al ciclo diurno/nocturno.

Máxima temperatura del material base en el largo plazo

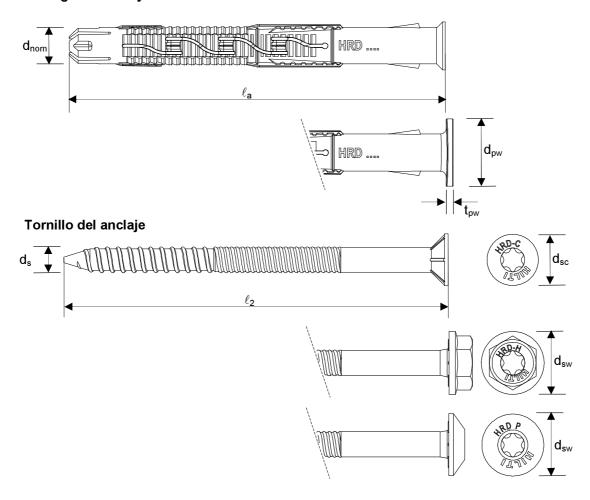
Como temperatura del material en el largo plazo se considera aquellas que de manera constante aplican durante largos periodos de tiempo.

Materiales

Propiedades mecánicas

Versión del anclaje			HRD 8	HRD 10
Tongión do roturo f	Acero al carbono	[N/mm²]	600	600
Tensión de rotura f _{uk}	Acero inoxidable	[N/mm²]	580	600
Límite elástico f _{yk}	Acero al carbono	[N/mm²]	480	480
	Acero inoxidable	[N/mm²]	450	480
Sección resistente A _s		[mm²]	22,9	35,3
Módulo resistente W		[mm³]	15,5	29,5
Resistencia característica a flexion M ⁰ _{Rk,s}	Acero al carbono	[Nm]	11,1	21,3
	Acero inoxidable	[Nm]	10,8	21,3

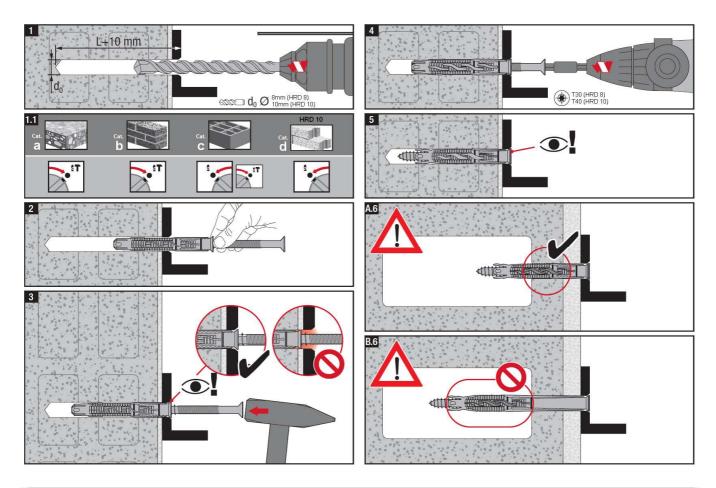
Calidad de los materiales


Partes	Material
Vástago (fuste plástico)	Poliamida , color rojo
	Acero al carbono, galvanised to min. 5 µm
Tornillo	Acero inoxidable, clase de corrosión II: 1.4301 / 1.4567 (A2)
	Acero inoxidable, clase de corrosión III: 1.4362 / 1.4401 / 1.4404 / 1.4571 (A4)

Dimensiones del anclaje

Versión del anclaje			HRD 8	HRD 10
Espesor mínimo de la fijación	$t_{fix,min}$	[mm]	0	0
Máximo espesor a fijar	$t_{fix,max}$	[mm]	90	260
Diámetro del vástago	d_{nom}	[mm]	8	10
Longitud minima del vástago	$\ell_{1, \text{min}}$	[mm]	60	60
Longitud maxima del vástago	$\ell_{1,\text{max}}$	[mm]	140	310
Diámetro de la arandela de plástico	d _{pw}	[mm]	-	17,5
Espesor de la arandela de plástico	$t_{\sf pw}$	[mm]	-	2
Diámetro del tornillo	ds	[mm]	6	7
Largo minima del tornillo	$\mathcal{L}_{2,min}$	[mm]	65	65
Largo máximo del tornillo	$\ell_{2,max}$	[mm]	145	315
Diámetro de la cabeza en la versión avellanada	d _{sc}	[mm]	11	14
Diámetro de la cabeza en la versión hexagonal	d _{sw}	[mm]	-	17,5

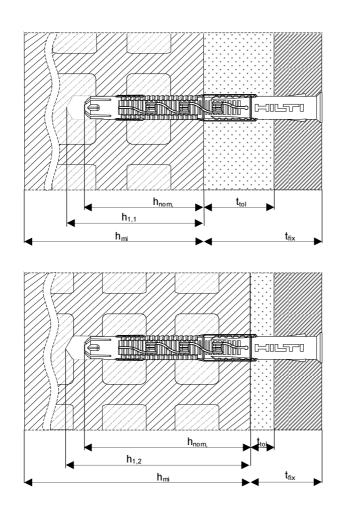
Vástago del anclaje



Colocación

Equipo de instalación

Versión del anclaje	
Martillo TE	TE2 TE16
Otras herramientas	Martillo, atornilladora


Instrucciones de colocación

Para información detallada sobre la instalación ver las instrucciones incluidas en la caja del producto.

Detalles de montaje: profundidad de taladro h_1 y empotramiento nominal h_{nom}

La aplicación con $h_{nom,3}$ = 90mm es similar

Detalles de colocación HRD


				HRD 8	HRD 10
Diámetro del taladro		d_{o}	[mm]	8	10
Diámetro de corte de la b	roca	d _{cut} ≤	[mm]	8,45	10,45
la zona final del taladro		$h_{1,1}\geq$	[mm]	60	60
		$h_{1,2}\geq \\$	[mm]	-	80
		$h_{1,3}\geq \\$	[mm]	-	100 ^{a)}
Empotramiento del anclaj	e en el material base	$h_{\text{nom},1} \geq$	[mm]	50	50
		$h_{\text{nom,2}} \geq$	[mm]	-	70
		$h_{\text{nom,3}} \geq$	[mm]	-	90 ^{a)}
Diámetro en chapa en	Cabeza avellanada	$d_f\!\leq\!$	[mm]	8,5	11
la fijación	Cabeza hexagonal	$d_f\!\leq\!$	[mm]	-	12
Rango de temperaturas de montaje			[°C]	-10 - +40	

^{a)} de uso en hormigon aireado

Detalles de colocación

Versión del anclaje				HRD 8	HRI	O 10
				h _{nom} =50mm	h _{nom} =50mm	h _{nom} =70mm
Mínimo espesor de	Hormigón	h _{min}	[mm]	100	100	120
material base	Mampostería (función del tipo de ladrillo)	h _{min}	[mm]	115	- 300	
	Hormigón ≥ C16/20	S _{min}	[mm]	100	5	0
	Homigon 2 C 16/20	for c ≥	[mm]	50	10	0 ^{c)}
Separación minima	Harmigán C12/15	S _{min}	[mm]	140	· -	0
entre anclajes (anclaje	Hormigón C12/15	for c ≥	[mm]	70	14	0 ^{c)}
aislado/grupo de anclajes)	Mampostería y hormigón aireado	S _{min}	[mm]	250	250	
	Mampostería y hormigón aireado	S _{min1}	[mm]	200 (120 ^{d)})	20	00
		S _{min2}	[mm]	400 (240 ^{d)})	40	00
	Hormigón ≥ C16/20	C _{min}	[mm]	50		0
		for $s \ge$	[mm]	100	150 ^{c)}	
Mínima distancia a	Hormigón C12/15	C _{min}	[mm]	70	70	
borde	Horringon C12/13	$ \text{for s} \geq$	[mm]	140	210 ^{c)}	
	Mampostería y hormigón aireado	C _{min}	[mm]	100 (60 ^{d)})	100	
Separación crítica en	Hormigón ≥ C16/20	S _{cr,N}	[mm]	62	80	125
hormigón ^{a)}	Hormigón C12/15	S _{cr,N}	[mm]	68	90	135
Distancia a borde	Hormigón ≥ C16/20	C _{cr,N}	[mm]	100	10	00
crítica en hormigón ^{b)}	Hormigón C12/15	C _{cr,N}	[mm]	140	14	10
	•	,			l	

Para separaciones mayores que las críticas puede considerarse como resistente a efectos de diseño cada anclaje.

b) Para distancias a borde inferiores a la crítica las cargas de diseño han de reducirse.

c) Es posible realizar una interpolación lineal.

d) Sólo para ladrillo tipo "Doppio Uni" y "Mattone"

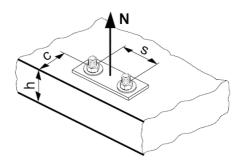
Método de cálculo

Método de diseño según ETAG 020, AnejoC. Resistencia de Diseño de acuerdo con la ETA-07/0219, edición 2010-08-12.

- Válido para un grupo de dos anclajes
- Con influencia de la distancia a borde

El método de diseño se basa en la siguientes simplificaciones:

- Espesor de material base h_{min}
- Hormigón de calidades C16/20 a C50/60
- No hay excentricidad en la aplicación de las cargas
- Cortante sin brazo de palanca


Estos valores son válidos para anclajes aislados o para grupos con una separación $< s_{cr,N}$ (para grupos con una separación $\ge s_{cr,N}$ se puede considerar a cada anclaje como actuante de manera individual).

Tracción

La resistencia a tracción es el menor valor de

Resistencia del acero: N_{Rd,s}
 Resistencia a la extracción: N_{Rd,p}

- Resistencia por cono de hormigón: N_{Rd,c}= N_{Rd,p} · (c/c_{cr,N})

Resistencia de diseño a tracción

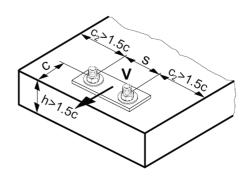
Resistencia de diseño por acero N_{Rd,s}

Versión del anclaje			HRD 8	HRD 10	
			h _{nom} =50mm	h _{nom} =50mm	$\begin{array}{c} h_{nom} \\ \geq 70mm \end{array}$
N	Acero al carbono	kN]	7,3	11,7	11,7
$N_{Rd,s}$	Acero [k	kN]	6,8	11,7	11,7

Resistencia a la extracción N_{Rd,p}

Resistencia por cono de hormigón $N_{Rd,c} = N_{Rd,p} \cdot (c/c_{cr,N})$

Versión del anclaje			HRD 8	HRD 10	
			h _{nom} =50mm	h _{nom} =50mm	h _{nom} ≥70mm
N	Acero al carbono	[kN]	1,7	2,5	4,7
$N_{Rd,p}$	Acero inoxidable	[kN]	1,7	2,5	4,7



Cortante

La resistencia a Cortante es la menor de

- Resistencia del acero: V_{Rd,s}

- Resistencia borde homigón: $V_{Rd,c} = f_1 \cdot c^{1,5} / 1000$

Resistencia de diseño a cortante

Resistencia de diseño del acero V_{Rd.s}

Versión del anclaje		HRD 8	HRD 10	
		h _{nom} =50mm	h _{nom} =50mm	h _{nom} ≥70mm
V	Acero al [kN]	5,5	8,5	8,5
$V_{Rd,s}$	Acero [kN] inoxidable	5,2	8,5	8,5

Resistencia de diseño por rotura del borde de hormigón $V_{Rd,c} = f_1 \cdot c^{1,5}$ / 1000 (c en [mm], resultado en [kN])

Factores de influencia

Influencia de la distancia a borde

Versión del anclaje	HRD 8	HRD 10	
	h _{nom} =50mm	h _{nom} =50mm	h _{nom} ≥70mm
$f_1 = (0.45 \cdot d_{nom}^{0.5} \cdot (h_{nom}/d_{nom})^{0.2} \cdot f_{ck,cube}^{0.5})/1.8$	5,1	5,4	5,8

Tracción, cortante y carga combinada en mampostería

Para el diseño en material base mampostería y hormigón aligerado, según especificación del método de diseño europeo, el valor resistente por anclaje es el mismo que para el grupo, independientemente del número de anclajes. El valor resistente recogido en las tablas es el valor resistente en cualquier dirección de aplicación de la carga.