

Sistema de Inyección

Hilti HIT-HY 150 MAX Cartucho disponible 330 ml, 500 ml y 1400 ml.

Varilla HIT-V Varilla HIT-V-R Varilla HIT-V-HCR

Europea

Marcado CE

Software de diseño Hilti

Hormigón

Distancia de borde y separación reducidas

Empotramiento flexible

Resistencia a corrosión

Alta resistencia a la corrosión

Hilti HIT-HY 150 MAX

Sistema de inyección bicomponente de altas prestaciones y fraguado rápido que en conjunto con las varillas HIT-V permiten una mayor flexibilidad en sus conexiones estructurales en hormigón.

- Adhesivo híbrido de metacrilato de uretano libre de estireno.
- No contiene sustancias cancerígenas ni venenosas, cumpliendo todas la normativas vigentes de seguridad y salud.
- Resina homologada para su uso con barras corrugadas a posteriori (para más información consulte el documento correspondiente).

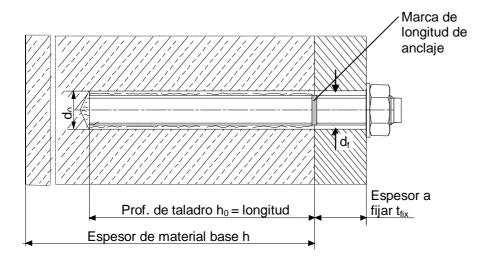
Características y Ventajas

- Homologada según normativa europea Opción 1: hormigón fisurado y no fisurado de C20/25 a C50/60.
- Válido para hormigón seco y saturado.
- Alta capacidad de carga.
- Aplicación con grandes diámetros.
- Tiempo de curado rápido, alcanzando un alto nivel de carga en un breve periodo de tiempo.
- Permite pequeñas distancias a borde y de separación entre anclajes.
- Profundidad de empotramiento flexible de 4 a 20 veces el diámetro de la varilla.
- Rango de temperatura de servicio hasta 120ºC (corto plazo) y 72ºC (largo plazo).
- Limpieza manual desde M8 a M16 con una profundidad de anclaje h_{ef ≤} 10d.
- Diseño de cálculo con el programa Hilti PROFIS Anchor 2.0

Aplicaciones

- Angulares, placas de anclajes en hormigón.
- Anclajes de pilares.
- Barreras de seguridad o impacto.

- Maquinaria pesada.
- Fijación de grúas o puentes grúa.
- Estructuras metálicas.


Datos de colocación

ETA Nº 08/0352

Validez hasta 18/12/2013

Métrica			M8	M10	M12	M16	M20	M24	M27	M30	
Diámetro nominal de la broca	d ₀	[mm]	10	12	14	18	24	28	30	35	
Rango de Profundidad de anclaje ^{a)}	h _{ef,min}	[mm]	60	60	70	80	90	100	110	120	
para HIT-V	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600	
Mínimo espesor de material base	h _{min}	[mm]		h _{ef} + 30 mm ≥ 100 mm			h_{ef} + 2 d_0				
Diámetro de taladro en placa	d _f	[mm]	9	12	14	18	22	26	30	33	
Par de apriete	T _{max} b)	[Nm]	10	20	40	80	150	200	270	300	
Separación mínima	S _{min}	[mm]	40	50	60	80	100	120	135	150	
Mínima distancia a borde	C _{min}	[mm]	40	50	60	80	100	120	135	150	
Separación para fallo por splitting	S _{cr,sp}	[mm]				2 c	cr,sp				
			1,0 · h _{ef}		para h / h _{ef} ≥	: 2,0	h/h _{ef}				
Distancia mínima a borde para fallo por splitting c)	C _{cr,sp}	[mm]	4,6 h _{ef} - 1	,8 h	para 2,0 > h	/ h _{ef} > 1,3	1,3				
			2,26 h _{ef}		para h / h _{ef} ≥	: 1,3	1	1,0·h _{el}	2,26·h _{ef}	C _{cr,sp}	
Separación mínima para fallo por cono de hormigón	S _{cr,N}	[mm]				2 C _{cr,N}					
Distancia mínima a borde para fallo por cono de hormigón	C _{cr,N}	[mm]				1,5	h _{ef}				

Para separación (distancia a borde) menor que la separación crítica (distancia crítica a borde) las cargas de diseño tienen que ser reducidas.

a) Empotramiento variable $h_{ef,min} \ge h_{ef} \ge h_{ef,max}$

hormigón

- b) Máximo par de apriete para evitar el fallo por splitting durante la instalación para anclajes con separación y/o distancia a borde mínimas.
- c) h: Espesor de material base ($h \ge h_{min}$), h_{ef} : Profundidad efectiva
- d) La distancia crítica a borde para fallo por cono de hormigón depende de la profundidad de anclaje efectiva y de la tensión de adherencia de diseño. Las fórmulas simplificadas dadas en esta tabla están del lado de la seguridad.

Datos de carga (para un anclaje aislado)

Toda la información en esta sección aplica para:

(Para más detalles ver el método de diseño simplificado)

- Instalación correcta (ver instrucciones de colocación).
- Sin influencia entre anclajes ni de borde .
- Fallo por acero.
- Espesor de material base como definido en la tabla.
- Longitud de anclaje, como definido en la tabla.
- Un material de anclaje, como definido en las tablas.
- Hormigón C 20/25, $f_{ck,cube} = 25 \text{ N/mm}^2$
- Rango de temperatura I
 - (min. Temperatura del material base -40℃, max. temp eratura del material base (largo/corto): +24℃/40℃)
- Rango de temperatura de instalación: -10℃ a +40 ℃.

Profundidad de anclaje a) y espesor de material base.

Resistencia última media, resistencia característica, resistencia de diseño, cargas recomendadas.

Métrica		M8	M10	M12	M16	M20	M24	M27	M30
Profundidad de anclaje h _{ef}	[mm]	80	90	110	125	170	210	240	270
Espesor de material base h	[mm]	110	120	140	165	220	270	300	340

El rango de profundidades de anclaje permitido se puede ver en detalles de colocación. Los valores de carga correspondientes pueden ser calculados de acuerdo con el método de diseño simplificado.

Resistencia última media: Hormigón no-fisurado C 20/25, anclaje HIT-V 5.8

Métrica			M8	M10	M12	M16	M20	M24	M27	M30
Tracción N _{Ru,m}	HIT-V 5.8	[kN]	18,9	30,5	44, 1	83,0	129,2	185,9	241,5	288,4
Cortante V _{Ru,m}	HIT-V 5.8	[kN]	9,5	15,8	22,1	41,0	64, 1	92,4	120,8	147,0

Resistencia característica: Hormigón no-fisurado C 20/25, anclaje HIT-V 5.8

Métrica			M8	M10	M12	M16	M20	M24	M27	M30
Tracción N _{Rk}	HIT-V 5.8	[kN]	18,0	29,0	42,0	70,6	111,9	153,7	187,8	216,3
Cortante V _{Rk}	HIT-V 5.8	[kN]	9,0	15,0	21,0	39,0	61,0	88,0	115,0	140,0

Resistencia de Diseño: Hormigón no-fisurado C 20/25, anclaje HIT-V 5.8

Métrica			M8	M10	M12	M16	M20	M24	M27	M30
Tracción N _{Rd}	HIT-V 5.8	[kN]	12,0	19,3	28,0	47,1	74,6	102,5	125,2	120,2
Cortante V _{Rd}	HIT-V 5.8	[kN]	7,2	12,0	16,8	31,2	48,8	70,4	92,0	112,0

Cargas recomendadas ^{a)}: Hormigón no-fisurado C 20/25, anclaje HIT-V 5.8

•			_			•	•			
Métrica			M8	M10	M12	M16	M20	M24	M27	M30
Tracción N _{rec}	HIT-V 5.8	[kN]	8,6	13,8	20,0	33,6	53,3	73,2	89,4	85,8
Cortante V _{rec}	HIT-V 5.8	[kN]	5.1	8.6	12.0	22.3	34.9	50.3	65.7	80.0

^{a)} Para las cargas recomendadas, se considera un coeficiente de seguridad parcial para las acciones de γ_F = 1,4. Los coeficientes de seguridad parcial para las acciones dependen del tipo de carga y deben tomarse de las nomativas nacionales. De acuerdo con ETAG 001, anexo C, el coeficiente de seguridad parcial es γ_G = 1,35 para acciones permanentes y γ_Q = 1,5 para acciones variables.

Método de diseño simplificado

Versión simplificada del método de diseño de de la ETAG 001, TR 029. Resistencia de Diseño de acuerdo con la ETA-08/0352, edición 2008-12-18.

- Influencia de la resistencia del hormigón .
- Influencia de la distancia a borde.
- Influencia de la separación.
- Válido para un grupo de dos anclajes.

El método puede ser también aplicado para grupos de más de dos anclajes o más de un borde . Los factores de influencia deben ser considerados para cada distancia a borde o separación entre anclajes. Las cargas de diseño calculadas están del lado de la seguridad: serán más bajas que los valores presentes en la ETAG 001, TR 029. Para evitar esto, se recomienda la utilización del software de diseño de anclajes PROFIS Anchor.

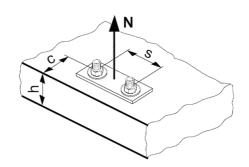
El método de diseño se basa en la siguiente simplificación:

No hay cargas diferentes en valor actuante sobre los anclajes (no hay excentricidad).

Los valores son válidos para un anclaje.

Para disposiciones más complejas utilizar el Software de diseño PROFIS anchor.

Tracción


La resistencia a tracción es el menor valor de:

- Resistencia del acero: N_{Rd.s}
- Resistencia combinada de extracción y cono de hormigón :

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{B,p} \cdot f_{h,p}$$

- Resistencia del cono: $N_{Rd,c} = N_{Rd,c}^0 \cdot f_B \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{h,N} \cdot f_{re,N}$
- Resistencia a splitting (solo hormigón no-fisurado):

$$N_{Rd,sp} = N_{Rd,c}^0 \cdot f_B \cdot f_{1,sp} \cdot f_{2,sp} \cdot f_{3,sp} \cdot f_{h,sp} \cdot f_{re,N}$$

Resistencia de diseño a tracción

Resistencia de diseño del acero N_{Rd.s}

Métric	ca		M8	M10	M12	M16	M20	M24	M27	M30
	HIT-V 5.8	[kN]	12,0	19,3	28,0	52,7	82,0	118,0	153,3	187,3
N	HIT-V 8.8	[kN]	19,3	30,7	44,7	84,0	130,7	188,0	244,7	299,3
$N_{Rd,s}$	HIT-V-R	[kN]	13,9	21,9	31,6	58,8	92,0	132,1	80,4	98,3
	HIT-V-HCR	[kN]	19,3	30,7	44,7	84,0	130,7	117,6	152,9	187,1

Resistencia de diseño combinada de extracción y cono de hormigón

$$N_{Rd,p} = N^{0}_{Rd,p} \cdot f_{B,p} \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{h,p} \cdot f_{re,N}$$

Métrio	ca		M8	M10	M12	M16	M20	M24	M27	M30
	ndidad efectiva	F	80	90	110	125	170	210	240	270
$h_{ef} = h$	ef,typ	[mm]		'	'		'	'	'	
$N^0_{Rd,p}$	Rango temperatura I	[kN]	15,6	22,0	32,3	54,5	85,5	116,1	135,7	120,2
$N^0_{Rd,p}$	Rango temperatura II	[kN]	13,4	18,8	27,6	50,3	78,3	105,6	122,1	99,0
$N_{Rd,p}^0$	Rango temperatura III	[kN]	8,9	12,6	18,4	29,3	46,3	63,3	74,6	63,6

Resistencia de diseño del cono de hormigón $N_{Rd,c} = N^0_{Rd,c} \cdot f_B \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{h,N} \cdot f_{re,N}$ Resistencia de diseño a fisuración (splitting) a) $N_{Rd,sp} = N^0_{Rd,c} \cdot f_B \cdot f_{1,sp} \cdot f_{2,sp} \cdot f_{3,sp} \cdot f_{h,N} \cdot f_{re,N}$

Métrica		M8	M10	M12	M16	M20	M24	M27	M30
$N^0_{Rd,c}$	[kN]	20,1	24,0	32,4	47,1	74,6	102,5	125,2	124,5

Factores de influencia

Influencia de la resistencia del hormigón en la resistencia a combinada de extracción y cono de hormigón

Clase (ENV	de resistencia del hormigón 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
f _{B,p} =	$(f_{ck,cube}/25N/mm^2)^{0,10}$ a)	1,00	1,02	1,04	1,06	1,07	1,08	1,09

f_{ck,cube} = Resistencia a compresión del hormigón en probeta cúbica.

Influencia de la Profundidad de anclaje en la resistencia a combinada de extracción y cono de hormigón

$$f_{h,p} = h_{ef}/h_{ef,typ}$$

Influencia de la resistencia del hormigón en la resistencia del cono de hormigón

Clase de resistencia del hormigón (ENV 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
$f_B = (f_{ck,cube}/25N/mm^2)^{0.5 a})$	1	1,1	1,22	1,34	1,41	1,48	1,55

f_{ck,cube} = Resistencia a compresión del hormigón en probeta cúbica.

Influencia de la distancia a borde a

C/C _{cr,N}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
	0,73	0,76	0,79	0,82	0,85	0,88	0,91	0,94	0,97	1
	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1

La distancia a borde no debe ser menor que la distancia a borde mínima c_{min} dada en la tabla con las condiciones de colocación. Estos factores de influencia deben ser considerados para todos los valores de distancia a borde inferiores al valor mínimo.

Influencia de la separación entre anclajes a)

s/s	cr,N	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
s/s	cr,sp	0,1	0,2	0,5	0,4	0,3	0,0	0,1	0,0	0,3	
$f_{3,N}$	= $0.5 \cdot (1 + s/s_{cr,N})$ ≤ 1	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1
f _{3,sp}	= $0.5 \cdot (1 + s/s_{cr,sp}) \le 1$	0,55	0,00	0,03	0,70	0,75	0,80	0,65	0,90	0,95	'

La separación entre anclajes no debe ser menor que la separación mínima s_{min} dada en la tabla con las condiciones de colocación. Estos factores de influencia deben ser considerados para cada separación.

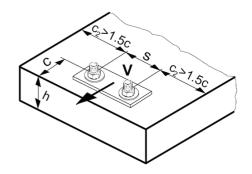
Influencia de la Profundidad de anclaje en la resistencia del cono de hormigón

$$f_{h,N} = (h_{ef}/h_{ef,typ})^{1,5}$$

Influencia del armado

h _{ef} [mm]	40	50	60	70	80	90	= 100
$f_{re,N} = 0.5 + h_{ef}/200mm \ge 1$	0,7 a)	0,75 ^{a)}	0,8 ^{a)}	0,85 ^{a)}	0,9 ^{a)}	0,95 ^{a)}	1

Este factor se aplica sólo para armado denso. Si, en el área del anclaje, existe armado con una separación ≥ 150 mm (cualquier diámetro) o con un diámetro ≥ 10 mm y una separación ≥ 100 mm, entonces se puede aplicar un factor f_{re,N} = 1.


Cortante

La resistencia a Cortante es la menor de:

- Resistencia del acero: V_{Rd,s}

- Resistencia desconchamiento: $V_{Rd,cp} = k \cdot m$ ás bajo de $N_{Rd,p}$ y $N_{Rd,c}$

- Resistencia borde hormigón : $V_{Rd,c} = V_{Rd,c}^0 \cdot f_B \cdot f_B \cdot f_A \cdot f_{hef} \cdot f_c$

Resistencia de diseño a cortante

Resistencia de diseño del acero V_{Rd,s}

Métri	са		M8	M10	M12	M16	M20	M24	M27	M30
	HIT-V 5.8	[kN]	7,2	12,0	16,8	31,2	48,8	70,4	92,0	112,0
$V_{Rd.s}$	HIT-V 8.8	[kN]	12,0	18,4	27,2	50,4	78,4	112,8	147,2	179,2
V Rd,s	HIT-V-R	[kN]	8,3	12,8	19,2	35,3	55,1	79,5	48,3	58,8
	HIT-V-HCR	[kN]	12,0	18,4	27,2	50,4	78,4	70,9	92,0	112,0

Resistencia de diseño por desconchamiento $V_{Rd,cp}$ = menor valor ^{a)} de k · $N_{Rd,p}$ y k · $N_{Rd,c}$

$$k = 2 para h_{ef} = 60 mm$$

N_{Rd,c}: Resistencia de diseño de cono de hormigón.

Resistencia de diseño del borde hormigón

 $V_{Rd,c} = V_{Rd,c}^0 \cdot f_B \cdot f_{\beta} \cdot f_h \cdot f_4 \cdot f_{hef} \cdot f_c$

Métrica		M8	M10	M12	M16	M20	M24	M27	M30
Hormigón no-fisurado									
$V^0_{Rd,c}$	[kN]	5,9	8,6	11,6	18,7	27,0	36,6	44,5	53,0

Factores de influencia

Influencia de la resistencia del hormigón

Clase de resistencia del hormigón (ENV 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
$f_B = (f_{ck,cube}/25N/mm^2)^{1/2 a}$	1	1,1	1,22	1,34	1,41	1,48	1,55

f_{ck,cube} = Resistencia a compresión del hormigón en probeta cúbica.

Influencia del ángulo de la carga aplicada con la dirección perpendicular al borde libre

_					-	-				
Ángulo ß	0°	10°	20°	30°	40°	50°	60°	70°	80°	= 90°
f _β	1	1,01	1,05	1,13	1,24	1,40	1,64	1,97	2,32	2,50

N_{Rd,p}: Resistencia de diseño a combinada de extracción y cono de hormigón.

Influencia del espesor del material base

h/c	0,15	0,3	0,45	0,6	0,75	0,9	1,05	1,2	1,35	= 1,5	
$f_h = \{h/(1,5 \cdot c)\}^{1/2} \ge 1$	0,32	0,45	0,55	0,63	0,71	0,77	0,84	0,89	0,95	1,00	

Influencia de la separación entre anclajes y la distancia a borde $^{\rm a)}$ para la resistencia del borde de hormigón : ${\rm f_4}$

 $f_4 = (c/h_{ef})^{1.5} \cdot (1 + s / [3 \cdot c]) \cdot 0.5$

14 – (6/1	., ,			[0 * 0]) * 0,0												
c/h _{ef}	Un						Grupe	o de o	los an	clajes	s/h _{ef}					
Officer	Anclaje	0,75	1,50	2,25	3,00	3,75	4,50	5,25	6,00	6,75	7,50	8,25	9,00	9,75	10,50	11,25
0,50	0,35	0,27	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35
0,75	0,65	0,43	0,54	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65
1,00	1,00	0,63	0,75	0,88	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1,25	1,40	0,84	0,98	1,12	1,26	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40
1,50	1,84	1,07	1,22	1,38	1,53	1,68	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84
1,75	2,32	1,32	1,49	1,65	1,82	1,98	2,15	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32
2,00	2,83	1,59	1,77	1,94	2,12	2,30	2,47	2,65	2,83	2,83	2,83	2,83	2,83	2,83	2,83	2,83
2,25	3,38	1,88	2,06	2,25	2,44	2,63	2,81	3,00	3,19	3,38	3,38	3,38	3,38	3,38	3,38	3,38
2,50	3,95	2,17	2,37	2,57	2,77	2,96	3,16	3,36	3,56	3,76	3,95	3,95	3,95	3,95	3,95	3,95
2,75	4,56	2,49	2,69	2,90	3,11	3,32	3,52	3,73	3,94	4,15	4,35	4,56	4,56	4,56	4,56	4,56
3,00	5,20	2,81	3,03	3,25	3,46	3,68	3,90	4,11	4,33	4,55	4,76	4,98	5,20	5,20	5,20	5,20
3,25	5,86	3,15	3,38	3,61	3,83	4,06	4,28	4,51	4,73	4,96	5,18	5,41	5,63	5,86	5,86	5,86
3,50	6,55	3,51	3,74	3,98	4,21	4,44	4,68	4,91	5,14	5,38	5,61	5,85	6,08	6,31	6,55	6,55
3,75	7,26	3,87	4,12	4,36	4,60	4,84	5,08	5,33	5,57	5,81	6,05	6,29	6,54	6,78	7,02	7,26
4,00	8,00	4,25	4,50	4,75	5,00	5,25	5,50	5,75	6,00	6,25	6,50	6,75	7,00	7,25	7,50	7,75
4,25	8,76	4,64	4,90	5,15	5,41	5,67	5,93	6,18	6,44	6,70	6,96	7,22	7,47	7,73	7,99	8,25
4,50	9,55	5,04	5,30	5,57	5,83	6,10	6,36	6,63	6,89	7,16	7,42	7,69	7,95	8,22	8,49	8,75
4,75	10,35	5,45	5,72	5,99	6,27	6,54	6,81	7,08	7,36	7,63	7,90	8,17	8,45	8,72	8,99	9,26
5,00	11,18	5,87	6,15	6,43	6,71	6,99	7,27	7,55	7,83	8,11	8,39	8,66	8,94	9,22	9,50	9,78
5,25	12,03	6,30	6,59	6,87	7,16	7,45	7,73	8,02	8,31	8,59	8,88	9,17	9,45	9,74	10,02	10,31
5,50	12,90	6,74	7,04	7,33	7,62	7,92	8,21	8,50	8,79	9,09	9,38	9,67	9,97	10,26	10,55	10,85

a) La separación entre anclajes y la distancia a borde no debe ser menor que la separación mínima s_{min} y la distancia a borde mínima c_{min}.

Influencia de la profundidad efectiva

h _{ef} /d	4	4,5	5	6	7	8	9	10	11
$f_{hef} = 0.05 \cdot (h_{ef} / d)^{1.68}$	0,51	0,63	0,75	1,01	1,31	1,64	2,00	2,39	2,81
h _{ef} /d	12	13	14	15	16	17	18	19	20
$f_{hef} = 0.05 \cdot (h_{ef} / d)^{1.68}$	3,25	3,72	4,21	4,73	5,27	5,84	6,42	7,04	7,67

Influencia de la distancia a borde a)

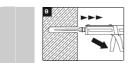
c/d	4	6	8	10	15	20	30	40
$f_c = (d/c)^{0,19}$	0,77	0,71	0,67	0,65	0,60	0,57	0,52	0,50

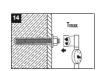
a) La distancia a borde no debe ser menor que la distancia a borde c_{min}.

Cargas combinadas (Tracción y Cortante)

Para Cargas combinadas (Tracción y Cortante) ver sección "Diseño de Anclajes".

Instrucciones de colocación





Realización del taladro

Con martillo de percusión seleccionando en modo de perforador y empleando una broca de carburo del tamaño adecuado.

a) Limpieza manual

Para taladros máx. ϕ 20mm y una profundidad máxima de 10 ϕ del

- (2) Soplado a presión 4 veces con bombín de limpieza Hilti. (3) Cepillar 4 veces con cepillo HIT-RB, insertando en el fondo del taladro con movimiento giratorio y luego extraerlo.
- (4) Soplado a presión 4 veces.

b) Limpieza con aire comprimido

Puede utilizarse en todos los diámetros y profundidades de empotramiento.

- (2) Soplado a presión con pistola de aire comprimido y retire la boquilla de aire 2 veces hasta que la corriente de aire de retorno no contenga polvo visible.
- (3) Cepillar 2 veces.
- (4) Soplado a presión con pistola de aire comprimido 2 veces hasta que la corriente de aire de retorno no contenga polvo

Inserción de cartucho

- (5) Inserción del cartucho en el portacartucho.
- (6) Fijación del mezclador HIT-RE M al colector del cartucho.
- (7) Inserción del portacartuchos con el cartucho en el
- aplicador HIT
 (8) Embolada inicial para garantizar la homogeneidad de la mezcla. Se elimina previamente la cantidad señalada de resina como indica la figura.

Inyección: Se realiza desde la parte trasera del taladro sin que se formen burbujas de aire.

c) Método de inyección para taladros con un profundidad 🛭 250 mm:

- (9) Se inyecta el adhesivo comenzado por la parte de atrás.
- Lentamente, retirar el mezclador después de cada aplicación. (10) Rellenar el taladro hasta que el espacio anular entre el elemento de fijación y el hormigón este completo. (11) Una vez finalizada la inyección, despresurizar el
- aplicador pulsando el gatillo de bloqueo.
- d) Método de inyección con tapón pistón: recomendada para aplicaciones suspendidas y taladros con una profundidad $_{\rm z}$ > 250 mm:
- Ensamblar el mezclador, las extensiones necesarias y el tapón de tamaño adecuado.
- Insertar el tapón pistón HIT-SZ en el fondo del taladro e inyectar como en la figura (10). Durante la inyección, el tapón pistón será extruido del taladro por la presión de la resina.

Instalación

- (12) Marcar y fijar el corrugado o varilla Hilti a la profundidad de empotrameinto deseada. Para facilitar la instalación, gire
- lentamente el elemento a medida que se va insertando. (13) No ajustar el corrugado o varilla Hilti una vez finalizado el tiempo "t_{qel}" y hasta que haya transcurrido el tiempo "t_{cure}". (14) Aplicar el par de apriete indicado una vez transcurrido el

Métrica	M8	M10	M16	M20	M24	M27	M30
Martillo percutor		TE 2 – TE 16			TE 40 -	TE 70	
Par de apriete			Llav	e dinamométrica	1		

cho HIT-HY 150 MAX	330 ml	500 ml	1400 ml
ador		HIT-RE M	
Manual	MD 2000		
	MD 2500		
Batería	ED 3500-A		
Neumático	P 3000	P 3500	P 8000D
Manual	Bombín de limpio	eza y set de cepillos con esco	obilla
Aire comprimido	Pistola de aire comp	orimido y set de cepillos con e	escobilla
	Ador Manual Batería Neumático Manual	Manual MD 2000 MD 2500 MD 2500 Batería ED 3500-A Neumático P 3000 Manual Bombín de limpie	Ador HIT-RE M Manual MD 2000 MD 2500 MD 2500-A Batería ED 3500-A Neumático P 3000 P 3500 Manual Bombín de limpieza y set de cepillos con escalar

Tiempos de manipulación y de fraguado

Temperatura del material base	Tiempo de manipulación t _{gel}	Tiempo de fraguado hasta la puesta en carga t _{cure}				
-10°C a -5°C	180 min	12 h				
-5 ℃ a 0 ℃	40 min	4 h				
0 ℃ a 5 ℃	20 min	2 h				
5 ℃ a 20 ℃	8 min	1 h				
20 ℃ a 30 ℃	5 min	30 min				
30 ℃ a 40 ℃	2 min	30 min				

Rango de temperatura de servicio

El sistema de anclaje Hilti HIT-HY 150 MAX debe ser aplicado en el rango de temperaturas que se presenta a continuación.

Temperaturas superiores del material base pueden conducir a una reducción de la tensión de adherencia.

Rango de temperatura	Temperatura del material base	Temperatura máxima del material base a largo plazo*	Temperatura máxima del material base a corto plazo**
Rango temperatura I	-40°C a +40°C	+24°C	+40°C
Rango temperatura II	-40°C a +80°C	+50°C	+80°C
Rango temperatura III	-40°C a 120°C	+72°C	+120°C

^{*} Temperatura máxima del material base a largo plazo: aquella que se mantiene prácticamente constante por largos periodos de tiempo.

Geometría y propiedades mecánicas del anclaje Calidad de los materiales

HIT-V	Tipo de acero	Protección		
Varilla roscada	Clase 5.8 Galvanizado			
	Clase 8.8 (grandes longitudes)			
Tuerca	Clase 8.8	Galvanizado 5 μm		
Arandela	Clase 8.8	Galvanizado 5 μm		

HIT-V-R	Tipo de acero	Protección		
Varilla roscada	A4-70	Inox		
Tuerca	A4-70	inox		
Arandela	A4	inox		

Para varilla en versión HCR, consulte con la oficina técnica.

Propiedades Mecánicas HIT-V		M8	M10	M12	M16	M20	M24	M27*	M30*	
t _{uk} nom	Tensión	HIT-V 5.8	500	500	500	500	500	500	500	500
	nominal última	HIT-V 8.8	800	800	800	800	800	800	800	800
	ullilla	HIT-V-R	700	700	700	700	700	700	500	500
f _{yk} Límir (N/mm²) elásti	Límito	HIT-V 5.8	400	400	400	400	400	400	400	400
	elástico	HIT-V 8.8	640	640	640	640	640	640	640	640
		HIT-V-R	450	450	450	450	450	450	210	210
A _s (mm²)	Sección resistente		36,6	58,0	84,3	157	245	353	459	561
W (mm ³)	Módulo resistente (flexión)		27,0	54,1	93,8	244	474	809	1274	1706

^{*} Consulte disponibilidad en los servicios de Atención al Cliente de Hilti.

^{**} Temperatura máxims del material base a corto plazo: aquella que puede ocurrir en intervalos cortos, como por ejemplo, a lo largo de un día.