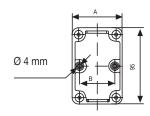
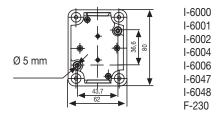
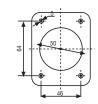
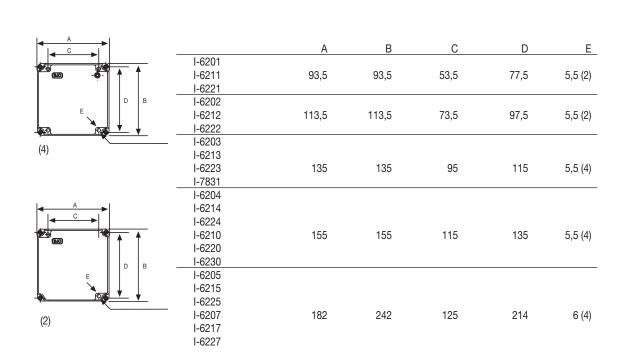

CARACTERÍSTICAS TÉCNICAS

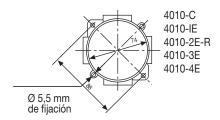

ÍNDICE POR REFERENCIAS

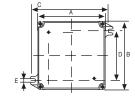

CAJAS ESTANCAS Y DERIVACION

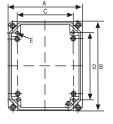

SERIE MARINER



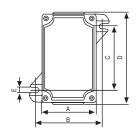
	Α	В	
I-6008	62	44	
I-6009	106	90	
I-6010	106	90	
I-6011	62	44	



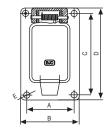

I-6000-TP


CAJAS ESTANCAS Y DERIVACION

SERIE ALUMINIO

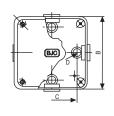


	Α	В	С	D	Ε
4022	94	94	108	64	Ø6
4032	114	114	128	84	Ø6
4042	136	136	150	98	Ø6
4052	156	156	170	118	Ø6
4053	156	156	170	118	Ø6
4020	94	94	108	64	Ø6
4030	114	114	128	84	Ø6
4040	136	136	150	98	Ø6
4050	156	156	170	118	Ø6
4054	156	156	170	118	Ø6

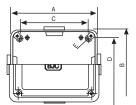


	Α	В	С	D	Ε
4063	174	214	130	156	Ø7
4064	214	264	170	206	Ø7
4065	174	214	130	156	Ø7
4066	214	264	170	206	Ø7
4067	174	214	130	156	Ø7
4068	214	264	170	206	Ø7
4069	174	214	130	156	Ø7
4070	214	264	170	206	Ø7

SERIE ALUMINIO

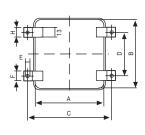


Ø6
Ø6
Ø6
Ø6



	Α	В	С	D	E_
4001	50	60	85	95	Ø4,5
4003	104	118	104	118	Ø5,5

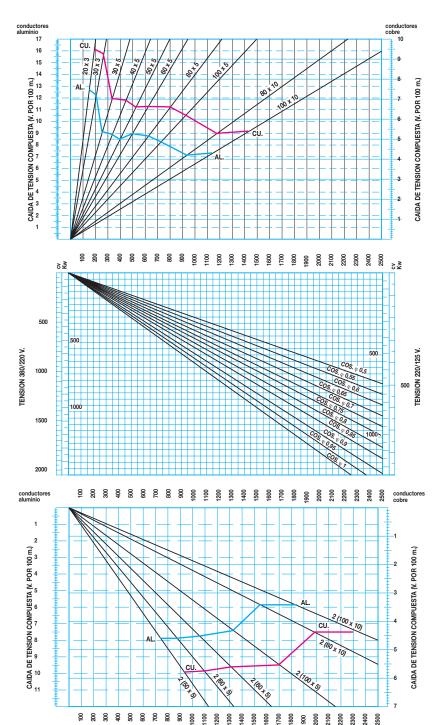
CAJAS PLASTIFICADAS



	А	В	C	D
4500	97	97	65	Ø7,5
4501	117	117	85	Ø7,5
4502	137	137	105	Ø7,5
4503	157	157	125	Ø7,5
4504	97	97	65	Ø7,5
4505	117	117	85	Ø7,5
4506	137	137	105	Ø7,5
4507	157	157	125	Ø7,5

	Α	В	С	D	Ε
4508	208	168	169	129	Ø7
4509	208	168	169	129	Ø7
4510	258	208	214	164	Ø7
4511	310	260	265	215	Ø7

SERIE 5000



	Α	В	С	D	Е	F	Н
5010 C	90	90	109,5	58	4,7	7,5	13
5092	90	90	109,5	58	4,7	7,5	13
5015 C	110	110	130,5	78	4,7	7,5	13
5093	110	110	130,5	78	4,7	7,5	13
5023 C	150	150	170,5	111	7	10	13
5095	150	150	170,5	111	7	10	13
5033	130	130	150,5	98	7	10	17
5094	130	130	150,5	98	7	10	17
5041	170	215	193	174	7	10	17
5045	215	215	240	174	7	10	17
5099	110	215	133	174	7	10	17

ELECTROCANAL

Barras para Electrocanal de 200 y 300 • Cálculo de las barras conductoras

Ejemplo n.º 1

Datos precisos sobre la instalación.

- Potencia de las máquinas a instalar: 350CV
- Cos φ de la instalación: 0,6 (compensación por grupos)
- Distancia máxima a final de línea: 250 m
- Tensión de alimentación: Trifásica más neutro: 220/125 V.

Para la obtención de la intensidad que circularía por la barras, entraríamos en el cuadro central por el lado de la tensión de trabajo (220/125 V). Por el punto correspondiente a la potencia conectada (350 CV), trazaríamos una horizontal hasta cortar con la línea del cos ϕ de la instalación (0,6 en nuestro caso), punto por el que se trazaría la vertical que correspondería a la intensidad buscada (1050 A. en el ejemplo presente).

Llegados a este punto, podemos determinar el empleo de una o dos barras según tracemos la vertical de la intensidad, en los cuadros superior o inferior. En nuestro caso, intentaremos primero en el superior, es decir el cuadro de una sola barra.

Hecho esto vemos que corta a las líneas correspondientes a las barras de:

80x5 100x5 80x10 100x10

Dado que vamos a emplear barras de cobre, las dos primeras quedan descartadas por exceso de calentamiento (véase que sobrepasan la línea roja). La tercera tampoco es válida por producir una caída de tensión excesiva, es decir, al trazar la horizontal desde el punto de cruce de la línea de intensidad con la línea correspondiente a la barra de 80x10 hasta la escala representativa de la caída de la tensión por 100 mts. para la tensión de alimentación considerada, vemos que esta caída de tensión es de 4,6 V, lo que nos indica que al final de la línea (250 mts.) será de 11,5 V y como esta caída no debe ser superior al 5% de la nominal (220 V) es decir 11 V, no podemos utilizar dicha barra.

Nos queda pues en definitiva la barra de 100x10, en la cual la caída de tensión total es de 9,75 V, valor este aceptable para la instalación.

Ejemplo n.º 2

Datos precisos sobre la instalación.

- Potencia de las máquinas a instalar: 1.120 CV
- \bullet Cos ϕ de la instalación: 0,85 (compensación individual)
- Distancia máxima a final de línea: 400 m
- Tensión de alimentación:

Trifásica más neutro: 380/220 V

Actuando del mismo modo que en el ejemplo nº 1, procederíamos a obtener la intensidad a partir de los datos conocidos: tensión de alimentación 380/220 V, potencia de la instalación 1.120 CV y cos ϕ de la misma 0,85. El resultado obtenido es 1.475 A.

A partir de esto podemos observar la imposibilidad de realizar la instalación con una sola barra por fase (véase que incluso en la barra de 100x10 el calentamiento así como la caída de tensión serían excesivos).

Visto esto pasemos al cuadro inferior correspondiente a las instalaciones con doble barra en el cual vemos

ELECTROCANAL

que la línea de intensidad 1.475 Amp. corta a las siguientes barras: 2(80x5) 2(200x5) 2(80x10) 2 100x10)

En el supuesto de utilizar barras de cobre, el empleo de la barra de 2(80x5) no sería viable por exceso de calentamiento.

En el caso de pretender utilizar 2(100x5) tampoco sería posible por exceso de caída de tensión (la caída de tensión resultante al final de línea sería 19,2 V, y la máxima admisible es 19V).

Serían en resumen utilizables las dos últimas 2(80x10) y 2(100x10) de las cuales, en caso de no haber previsto ninguna ampliación de potencia, se emplearía la primera de ellas es decir la de 2(80x10).

Electrocanal 200: Barras hasta 50x10 Electrocanal 300: Barras hasta (2) 100x10

Cables para el Electrocanal de 115 y 200 • Determinación de la carga térmica

Observaciones

- 1ª El ábaco de curvas del gráfico adjunto permite determinar la carga térmica l²/S en A²/mm² de cada conductor de cobre de sección normalizada, en función de su sección S en mm² y de la intensidad de la corriente I, en A, a que se halla sometido.
- 2ª Al objeto de que la temperatura de los conductores no rebase los límites admisibles, deben cumplirse las siguientes condiciones:
- a) Ningún conductor debe cargarse permanentemente con una intensidad superior a la limitada por las curvas A, B o C (indicadas a trazo y punto) y de acuerdo con el siguiente cuadro de valores:

de los valores máximos indicados en el apartado b.

b) Bajo una temperatura ambiente de 35°C, la carga térmica total $\sum \frac{\Gamma}{S} \approx$ (suma de la carga térmica de cada uno de los conductores contenidos en el Electrocanal) no debe rebasar los siguientes valores:

"Electrocanal 115"

$$\sum \frac{\text{l}^2}{\text{S}} \leq \frac{4.750 \text{ A}^2/\text{mm}^2 \text{ Electrocanal si n tapa}}{4.500 \text{ A}^2/\text{mm}^2 \text{ Electrocanal con ventanillas}}$$

$$3.250 \text{ A}^2/\text{mm}^2 \text{ Electrocanal cerrado}$$

"Electrocanal 200"

$$\sum \frac{I^2}{S} \leq \begin{array}{c} 5.500 \text{ A}^2/\text{mm}^2 \text{ Electrocanal si n tapa} \\ 5.250 \text{ A}^2/\text{mm}^2 \text{ Electrocanal con ventanillas} \\ 4.250 \text{ A}^2/\text{mm}^2 \text{ Electrocanal cerrado} \\ \end{array}$$

 c) Para temperatura ambiente distinta de la indicada en el apartado anterior
 b) las cargas térmicas totales máximas deben multiplicarse por los siguientes coeficientes de corrección:

Temperatura ambiente	Coeficiente de corrección
20°	1,32
25°	1,22
30°	1,12
35°	1
40°	0,87
45°	0,71
50°	0,5

Ejemplo de uso

Determinación de la carga térmica de un cable de cobre de 150mm2 de sección y una intensidad de 210 A.

Forma de proceder:

A = curva límite de intensidad para carga térmica total 100% del valor máximo.
B = idem para 75%.

Ejemplos de aplicación

(Para un "Electrocanal 115" con ventanillas)

Primer caso

Supongamos que deben disponerse la siguientes líneas bajo las cargas que se indican (a una temperatura ambiente de 35° C):

- a) 2 líneas trifásicas de 25 mm² cargadas con 50 A c/u
- b) 1 líneas trifásica de 95 mm² cargada con 100 A
- c) 1 líneas trifásica de 95 mm² cargada con 200 A
- d) 1 líneas trifásica de 240 mm² cargada con 300 A

Tendremos:

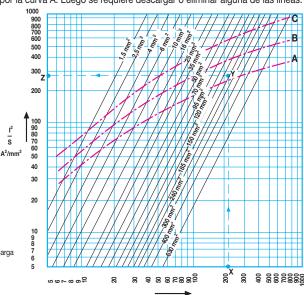
a)
$$2x3x100$$
 = $600 \text{ A}^2/\text{ mm}^2$
b) $1x3x100$ = $300 \text{ A}^2/\text{ mm}^2$
c) $1x3x400$ = $1.200 \text{ A}^2/\text{ mm}^2$
d) $1x3x350$ = $1.050 \text{ A}^2/\text{ mm}^2$

Total
$$\sum \frac{I^2}{S} = 3.150 < 4.500 \text{ A}^2/\text{ mm}^2$$

Luego será ADMISIBLE tanto desde el punto de vista de la carga térmica como de las intensidades máximas.

Segundo caso

Las mismas líneas anteriores pero cargadas de la siguiente forma:


- a) 2 líneas trifásicas de 25 mm² cargadas con 70 A c/u.
- b) 1 líneas trifásicas de 95 mm² cargadas con 200 A
- c) 1 líneas trifásicas de 95 mm² cargadas con 240 A
- d) 1 líneas trifásicas de 240 mm² cargadas con 300 A

Tendremos analógicamente:

a)
$$2x3x200$$
 = $1.200 \text{ A}^2/\text{mm}^2$
b) $1x3x400$ = $1.200 \text{ A}^2/\text{mm}^2$
c) $1x3x600$ = $1.800 \text{ A}^2/\text{mm}^2$
d) $1x3x350$ = $1.050 \text{ A}^2/\text{mm}^2$

Total
$$\sum \frac{l^2}{S}$$
 = 5.250 > 4.500 A²/mm²

Por tanto será inadmisible por rebasar la carga térmica y las intensidades limitadas por la curva A. Luego se requiere descargar o eliminar alguna de las líneas.

I en A